784 research outputs found

    Cold induces acute stress but heat is ultimately more deleterious for the reef-building coral <i>Acropora yongei</i>

    Get PDF
    Climate change driven increases in intensity and frequency of both hot and cold extreme events contribute to coral reef decline by causing widespread coral bleaching and mortality. Here, we show that hot and cold temperature changes cause distinct physiological responses on different time scales in reef-building corals. We exposed the branching coral Acropora yongei in individual aquaria to a ± 5°C temperature change. Compared to heat-treated corals, cold-treated corals initially show greater declines in growth and increases in photosynthetic pressure. However, after 2–3 weeks, cold-treated corals acclimate and show improvements in physiological state. In contrast, heat did not initially harm photochemical efficiency, but after a delay, photosynthetic pressure increased rapidly and corals experienced severe bleaching and cessation of growth. These results suggest that short-term cold temperature is more damaging for branching corals than short-term warm temperature, whereas long-term elevated temperature is more harmful than long-term depressed temperature

    Reconstructing the phytoplankton community of the Cariaco Basin during the Younger Dryas cold event using chlorin steryl esters

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA01006, doi:10.1029/2003PA000907.A record of the downcore distribution of chlorin steryl esters (CSEs) through the Younger Dryas was produced from Cariaco Basin sediments in order to assess the potential use of CSEs as recorders of the structure of phytoplankton communities through time. Using an improved high-performance liquid chromatography method for the separation of CSEs, we find significant changes in the distribution of CSEs during the Younger Dryas in the Cariaco Basin. During the Younger Dryas, enhanced upwelling in the Cariaco Basin caused an increase in the diatom population and therefore an increase in the relative abundance of CSEs derived from diatoms. In contrast, the dinoflagellate population, and therefore CSEs derived from dinoflagellates, decreased in response to the climate change during the Younger Dryas. These community shifts agree well with the shifts observed in the present day on a seasonal basis that result from the north-south migration of the Intertropical Convergence Zone over the Cariaco Basin. We also identify changes in the abundance of several CSEs that seem to reflect rapid warming and cooling events. This study suggests that CSEs are useful proxies for reconstructing phytoplankton communities and paleoenvironments.This work was supported by the Chemical Oceanography Division of the National Science Foundation and a WHOI Watson Fellowship (to KAD)

    Ostava grčkog novca iz Škudljivca na otoku Hvaru

    Get PDF

    Resilience and stability of a pelagic marine ecosystem

    Get PDF
    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS

    Co-variations of Cholera with Climatic and Environmental Parameters in Coastal Regions of Tanzania

    Get PDF
    The bacterium causing cholera, Vibrio cholerae, is essentially a marine organism and its ecological dynamics have been linked to oceanographic conditions and climate. We used autoregressive models with external inputs to identify potential relationships between number of cholera cases in the coastal regions of mainland Tanzania with climatic and environmental indices (maximum air temperature, sea surface temperature, wind speed and chlorophyll a). Results show that between 2004 and 2010 coastal regions of mainland Tanzania with approximately 21% of the total population accounted for approximately 50% of the cases and 40% of the total mortality. Significant co-variations were found between seasonally adjusted cases and coastal ocean chlorophyll a and to some degree sea surface temperature, both lagged by one to four months. Cholera cases in Dar es Salaam were also weakly related to the Indian Ocean Dipole Mode Index lagged by 5 months, suggesting that it may be possible to predict Cholera outbreaks for Dar es Salaam 5 months ahead of time. The results also suggest that the severity of cholera in coastal regions is set by conditions in the ocean and that longer-term environmental and climate parameters may be used to predict cholera outbreaks along the coastal regions

    Pulmonary exposure to carbonaceous nanomaterials and sperm quality

    Get PDF
    Abstract Background Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Methods Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Results Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels were found. Conclusion Despite the sustained pulmonary inflammatory response, an eight week exposure to graphene oxide, Flammruss 101, Printex 90 and the diesel particle SRM1650b in the present study did not appear to affect semen parameters, daily sperm production or testosterone concentration in male NMRI mice
    corecore