34 research outputs found

    Spatio-temporal genetic tagging of a cosmopolitan planktivorous shark provides insight to gene flow, temporal variation and site-specific re-encounters

    Get PDF
    Migratory movements in response to seasonal resources often influence population structure and dynamics. Yet in mobile marine predators, population genetic consequences of such repetitious behaviour remain inaccessible without comprehensive sampling strategies. Temporal genetic sampling of seasonally recurring aggregations of planktivorous basking sharks, Cetorhinus maximus, in the Northeast Atlantic (NEA) affords an opportunity to resolve individual re-encounters at key sites with population connectivity and patterns of relatedness. Genetic tagging (19 microsatellites) revealed 18% of re-sampled individuals in the NEA demonstrated inter/multi-annual site-specific re-encounters. High genetic connectivity and migration between aggregation sites indicate the Irish Sea as an important movement corridor, with a contemporary effective population estimate (Ne) of 382 (CI = 241–830). We contrast the prevailing view of high gene flow across oceanic regions with evidence of population structure within the NEA, with early-season sharks off southwest Ireland possibly representing genetically distinct migrants. Finally, we found basking sharks surfacing together in the NEA are on average more related than expected by chance, suggesting a genetic consequence of, or a potential mechanism maintaining, site-specific re-encounters. Long-term temporal genetic monitoring is paramount in determining future viability of cosmopolitan marine species, identifying genetic units for conservation management, and for understanding aggregation structure and dynamics

    Small cetacean captures in Peruvian artisanal fisheries: High despite protective legislation

    No full text
    We detail the first direct, at sea monitoring of small cetacean interactions with Peruvian artisanal drift gillnet and longline fisheries. A total of 253 small cetaceans were captured during 66 monitored fishing trips (Gillnet: 46 trips; Longline: 20 trips) from the port of Salaverry, northern Peru (8o14'S, 78o59'W) from March 2005 to July 2007. The most commonly captured species were common dolphins (Delphinus spp.) (47%), dusky dolphins (Lagenorhynchus obscurus) (29%), common bottlenose dolphins (Tursiops truncatus) (13%) and Burmeister’s porpoises (Phocoena spinipinnis) (6%). An estimated 95% of common dolphin bycatch was of long-beaked common dolphins (Delphinus capensis). Overall bycatch per unit effort for gillnet vessels (mean ± sd) was estimated to be 0.65 ± 0.41 animals.set-1 (range 0.05–1.50) and overall catch (bycatch and harpoon) was 4.96 ± 3.33 animals.trip-1 (range 0.33–13.33). Based upon total fishing effort for Salaverry we estimated the total annual average small cetacean bycatch by gillnet vessels as 2412 animals.year-1 (95% CI 1092–4303) for 2002–2007. This work indicates that, in at least one Peruvian port, bycatch and harpooning of small cetaceans persist at high levels and on a regular basis, particularly in driftnet vessels, despite the existence since the mid-1990s of national legislation banning the capture of marine mammals and commerce in their products. It is concluded that the coast of Peru is likely still one of the world’s principal areas for concern regarding high small cetacean bycatch and there is clearly an urgent need to increase the geographic scope of observer effort to elucidate the full magnitude of this issue

    The importance of sand albedo for the thermal conditions on sea turtle nesting beaches

    Full text link
    At Ascension Island and Cyprus, major nesting areas for green turtles (Chelonia mydas) in the Atlantic and Mediterranean, respectively, visual inspection shows some beaches are light in colour while others are darker. We objectively measured the albedo of the sand on different beaches, i.e. the percentage of the incident solar radiation that was reflected from the sand surface. At sites where albedo was recorded, we also measured the temperature of the sand at nest depths. At both rookeries, the sand temperature was markedly higher on darker beaches due to greater absorption of the incident solar radiation over the diurnal cycle. Temperature loggers buried at nest depths revealed seasonal changes in temperature on both islands, but showed that the lowest temperatures found on the darker beaches rarely dropped below the highest temperatures on the lighter beaches. Sea turtles exhibit temperature-dependent sex determination. Since sand albedo is a major avenue for the production of a range of incubation temperatures on both islands, it will also have profound implications for hatchling sex ratios. In comparison with both Ascension Island and Cyprus, for samples collected from sea turtle rookeries around the world there was an even greater range in sand albedo values. This suggests that sand albedo, a factor that has previously received little consideration, will have profound implications for nest temperatures, and hence hatchling sex ratios, for other populations and species

    Assessing wave energy effects on biodiversity: the Wave Hub experience

    No full text
    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects—both positive and negative
    corecore