179 research outputs found

    Benthic microalgal production in the Arctic: Applied methods and status of the current database

    Full text link
    The current database on benthic microalgal production in Arctic waters comprises 10 peer-reviewed and three unpublished studies. Here, we compile and discuss these datasets, along with the applied measurement approaches used. The latter is essential for robust comparative analysis and to clarify the often very confusing terminology in the existing literature. Our compilation demonstrates that i) benthic microalgae contribute significantly to coastal ecosystem production in the Arctic, and ii) benthic microalgal production on average exceeds pelagic productivity by a factor of 1.5 for water depths down to 30 m. We have established relationships between irradiance, water depth and benthic microalgal productivity that can be used to extrapolate results from quantitative experimental studies to the entire Arctic region. Two different approaches estimated that current benthic microalgal production in the Arctic is between 1.1 and 1.6×107 tons C year-1. Climate change is expected to increase the overall primary production and affect the balance between pelagic and benthic productivity in the Arctic. It is therefore imperative to get better quantitative understanding of the relationship between increased freshwater run-off, shrinking sea-ice cover, light availability and benthic primary production to assess future impact on the Arctic food web and trophic coupling. © 2009 by Walter de Gruyter

    Copepod carcasses as microbial hot spots for pelagic denitrification

    Get PDF
    Copepods are exposed to a high non-predatory mortality and their decomposing carcasses act as microniches with intensified microbial activity. Sinking carcasses could thereby represent anoxic microenvironment sustaining anaerobic microbial pathways in otherwise oxic water columns. Using non-invasive O-2 imaging, we document that carcasses of Calanus finmarchicus had an anoxic interior even at fully air-saturated ambient O-2 level. The extent of anoxia gradually expanded with decreasing ambient O-2 levels. Concurrent microbial sampling showed the expression of nitrite reductase genes (nirS) in all investigated carcass samples and thereby documented the potential for microbial denitrification in carcasses. The nirS gene was occasionally expressed in live copepods, but not as consistently as in carcasses. Incubations of sinking carcasses in (15)NO3-amended seawater demonstrated denitrification, of which on average 34%+/- 17% (n=28) was sustained by nitrification. However, the activity was highly variable and was strongly dependent on the ambient O-2 levels. While denitrification was present even at air-saturation (302 mol L-1), the average carcass specific activity increased several orders of magnitude to approximate to 1 nmol d(-1) at 20% air-saturation (55 mol O-2 L-1) at an ambient temperature of 7 degrees C. Sinking carcasses of C. finmarchicus therefore represent hotspots of pelagic denitrification, but the quantitative importance as a sink for bioavailable nitrogen is strongly dependent on the ambient O-2 level. The importance of carcass associated denitrification could be highly significant in O-2 depleted environments such as Oxygen Minimum Zones (OMZ)

    Reach-scale river metabolism across contrasting sub-catchment geologies: Effect of light and hydrology

    Get PDF
    We investigated the seasonal dynamics of in-stream metabolism at the reach scale (∼ 150 m) of headwaters across contrasting geological sub-catchments: clay, Greensand, and Chalk of the upper River Avon (UK). Benthic metabolic activity was quantified by aquatic eddy co-variance while water column activity was assessed by bottle incubations. Seasonal dynamics across reaches were specific for the three types of geologies. During the spring, all reaches were net autotrophic, with rates of up to 290 mmol C m-2 d-1 in the clay reach. During the remaining seasons, the clay and Greensand reaches were net heterotrophic, with peak oxygen consumption of 206 mmol m-2 d-1 during the autumn, while the Chalk reach was net heterotrophic only in winter. Overall, the water column alone still contributed to ∼ 25% of the annual respiration and primary production in all reaches. Net ecosystem metabolism (NEM) across seasons and reaches followed a general linear relationship with increasing stream light availability. Sub-catchment specific NEM proved to be linearly related to the local hydrological connectivity, quantified as the ratio between base flow and stream discharge, and expressed on a timescale of 9 d on average. This timescale apparently represents the average period of hydrological imprint for carbon turnover within the reaches. Combining a general light response and sub-catchment specific base flow ratio provided a robust functional relationship for predicting NEM at the reach scale. The novel approach proposed in this study can help facilitate spatial and temporal upscaling of riverine metabolism that may be applicable to a broader spectrum of catchments

    Imaging Oxygen Distribution in Marine Sediments. The Importance of Bioturbation and Sediment Heterogeneity

    Get PDF
    The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns:the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment–water interface

    Bottom mixed layer oxygen dynamics in the Celtic Sea

    Get PDF
    The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed

    Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line

    Get PDF
    During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ?5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 ?mol photons m?2 s?1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m?2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ?5 to 30 m water depth exhibited variable rates of net production from ?19 to +40 mg O2 m?2 h?1 (?168 to +360 mg C m?2 day?1) and gross production of about 2–62 mg O2 m?2 h?1 (17–554 mg C m?2 day?1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos

    Oxygen dynamics in shelf seas sediments incorporating seasonal variability

    Get PDF
    Shelf sediments play a vital role in global biogeochemical cycling and are particularly important areas of oxygen consumption and carbon mineralisation. Total benthic oxygen uptake, the sum of diffusive and faunal mediated uptake, is a robust proxy to quantify carbon mineralisation. However, oxygen uptake rates are dynamic, due to the diagenetic processes within the sediment, and can be spatially and temporally variable. Four benthic sites in the Celtic Sea, encompassing gradients of cohesive to permeable sediments, were sampled over four cruises to capture seasonal and spatial changes in oxygen dynamics. Total oxygen uptake (TOU) rates were measured through a suite of incubation experiments and oxygen microelectrode profiles were taken across all four benthic sites to provide the oxygen penetration depth and diffusive oxygen uptake (DOU) rates. The difference between TOU and DOU allowed for quantification of the fauna mediated oxygen uptake and diffusive uptake. High resolution measurements showed clear seasonal and spatial trends, with higher oxygen uptake rates measured in cohesive sediments compared to the permeable sediment. The significant differences in oxygen dynamics between the sediment types were consistent between seasons, with increasing oxygen consumption during and after the phytoplankton bloom. Carbon mineralisation in shelf sediments is strongly influenced by sediment type and seasonality

    Coral-Bacterial Communities before and after a Coral Mass Spawning Event on Ningaloo Reef

    Get PDF
    Bacteria associated with three coral species, Acropora tenuis, Pocillopora damicornis and Tubastrea faulkneri, were assessed before and after coral mass spawning on Ningaloo Reef in Western Australia. Two colonies of each species were sampled before and after the mass spawning event and two additional samples were collected for P. damicornis after planulation. A variable 470 bp region of the 16 S rRNA gene was selected for pyrosequencing to provide an understanding of potential variations in coral-associated bacterial diversity and community structure. Bacterial diversity increased for all coral species after spawning as assessed by Chao1 diversity indicators. Minimal changes in community structure were observed at the class level and data at the taxonomical level of genus incorporated into a PCA analysis indicated that despite bacterial diversity increasing after spawning, coral-associated community structure did not shift greatly with samples grouped according to species. However, interesting changes could be detected from the dataset; for example, α-Proteobacteria increased in relative abundance after coral spawning and particularly the Roseobacter clade was found to be prominent in all coral species, indicating that this group may be important in coral reproduction
    corecore