27 research outputs found

    The Pre-Main-Sequence Eclipsing Binary ASAS J052821+0338.5

    Full text link
    In this paper we present the first results of a detailed spectroscopic and photometric analysis of the V = 11.7m eclipsing binary ASAS J052821+0338.5. With the FIES spectrograph at the Nordic Optical Telescope we have obtained a series of high-resolution spectra (R=47000) covering the entire orbit of the system. In addition we obtained simultaneous broadband photometry from three small aperture telescopes. From these spectroscopic and photometric data we have derived the system's orbital parameters and determined the fundamental stellar parameters of the two components. Our results indicate that ASAS J052821+0338.5 is a K1/K3 pre-main-sequence eclipsing binary, with component masses of 1.38 M_sun and 1.33 M_sun and a period of 3.87 days, located at a distance of 280 +/- 30 pc. The kinematics, physical location and the evolutionary status of the two stars suggest that ASAS J052821+0338.5 is a member of the approximately 11 Myr old Orion OB1a subassociation. The systems also exhibits smooth 0.15m out-of-eclipse variations that are similar to those found in RS CVn binaries. Furthermore the parameters we derived are consistent with the 10-13 Myr isochrones of the popular Baraffe stellar evolutionary models.Comment: 9 pages, 8 figures, to appear in A&

    Results of WEBT, VLBA and RXTE monitoring of 3C 279 during 2006-2007

    Full text link
    We present radio-to-optical data taken by the WEBT, supplemented by VLBA and RXTE observations, of 3C 279. Our goal is to use this extensive database to draw inferences regarding the physics of the relativistic jet. We assemble multifrequency light curves with data from 30 ground-based observatories and the space-based instruments, along with linear polarization vs. time in the optical R band. In addition, we present a sequence of 22 images (with polarization vectors) at 43 GHz at resolution 0.15 milliarcsec, obtained with the VLBA. We analyse the light curves and polarization, as well as the spectral energy distributions at different epochs, corresponding to different brightness states. The IR-optical-UV continuum spectrum of the variable component corresponds to a power law with a constant slope of -1.6, while in the 2.4-10 keV X-ray band it varies in slope from -1.1 to -1.6. The steepest X-ray spectrum occurs at a flux minimum. During a decline in flux from maximum in late 2006, the optical and 43 GHz core polarization vectors rotate by ~300 degrees. The continuum spectrum agrees with steady injection of relativistic electrons with a power-law energy distribution of slope -3.2 that is steepened to -4.2 at high energies by radiative losses. The X-ray emission at flux minimum comes most likely from a new component that starts in an upstream section of the jet where inverse Compton scattering of seed photons from outside the jet is important. The rotation of the polarization vector implies that the jet contains a helical magnetic field that extends ~20 pc past the 43 GHz core.Comment: 12 pages, aa.cls style; accepted for publication in A&

    Investigation of a coherent instability with an ion beam probe

    No full text

    How well do state-of-the-art Atmosphere-Ocean general circulation models reproduce atmospheric teleconnection patterns?

    Get PDF
    This article evaluates the ability of state-of-the-art climate models to reproduce the low-frequency variability of the mid-tropospheric winter flow of the Northern Hemisphere in terms of atmospheric teleconnection patterns. Therefore, multi-model simulations for present-day conditions, performed for the 4th assessment report of the Intergovernmental Panel on Climate Change, have been analysed and compared with re-analysis data sets. The spatial patterns of atmospheric teleconnections are reproduced reasonably by most of the models. The comparison of coupled with atmosphere-only runs confirmed that a better representation of the forcing by sea surface temperatures has the potential to slightly improve the representation of only wave train-like patterns. Due to internally generated climate variability, the models are not able to reproduce the observed temporal behaviour. Insights into the dynamical reasons for the limited skill of climate models in reproducing teleconnections have been obtained by studying the relation between major teleconnections and zonal wind variability patterns. About half of the models are able to reproduce the observed relationship. For these cases, the quality of simulated teleconnection patterns is largely determined by the quality of zonal wind variability patterns. Therefore, improvements of simulated eddy-mean flow interaction have the potential to improve the atmospheric teleconnections
    corecore