28 research outputs found

    The VASIMR[registered trademark] VF-200-1 ISS Experiment as a Laboratory for Astrophysics

    Get PDF
    The VASIMR[R] Flight Experiment (VF-200-1) will be tested in space aboard the International Space Station (ISS) in about four years. It will consist of two 100 kW parallel plasma engines with opposite magnetic dipoles, resulting in a near zero-torque magnetic system. Electrical energy will come from ISS at low power level, be stored in batteries and used to fire the engine at 200 kW. The VF-200-1 project will provide a unique opportunity on the ISS National Laboratory for astrophysicists and space physicists to study the dynamic evolution of an expanding and reconnecting plasma loop. Here, we review the status of the project and discuss our current plans for computational modeling and in situ observation of a dynamic plasma loop on an experimental platform in low-Earth orbit. The VF-200-1 project is still in the early stages of development and we welcome new collaborators

    CpG-Methylation Regulates a Class of Epstein-Barr Virus Promoters

    Get PDF
    DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian gene regulation. In general, cytosine-phosphatidyl-guanosine (CpG)-methylated promoters are transcriptionally repressed and nuclear proteins such as MECP2, MBD1, MBD2, and MBD4 bind CpG-methylated DNA and contribute to epigenetic silencing. Methylation of viral DNA also regulates gene expression of Epstein-Barr virus (EBV), which is a model of herpes virus latency. In latently infected human B cells, the viral DNA is CpG-methylated, the majority of viral genes is repressed and virus synthesis is therefore abrogated. EBV's BZLF1 encodes a transcription factor of the AP-1 family (Zta) and is the master gene to overcome viral gene repression. In a genome-wide screen, we now identify and characterize those viral genes, which Zta regulates. Among them are genes essential for EBV's lytic phase, which paradoxically depend on strictly CpG-methylated promoters for their Zta-induced expression. We identified novel DNA recognition motifs, termed meZRE (methyl-Zta-responsive element), which Zta selectively binds in order to ‘read’ DNA in a methylation- and sequence-dependent manner unlike any other known protein. Zta is a homodimer but its binding characteristics to meZREs suggest a sequential, non-palindromic and bipartite DNA recognition element, which confers superior DNA binding compared to CpG-free ZREs. Our findings indicate that Zta has evolved to transactivate cytosine-methylated, hence repressed, silent promoters as a rule to overcome epigenetic silencing

    Predictors of children's secondhand smoke exposure at home: a systematic review and narrative synthesis of the evidence

    Get PDF
    BACKGROUND: Children's exposure to secondhand smoke (SHS) has been causally linked to a number of childhood morbidities and mortalities. Over 50% of UK children whose parents are smokers are regularly exposed to SHS at home. No previous review has identified the factors associated with children's SHS exposure in the home. AIM: To identify by systematic review, the factors which are associated with children's SHS exposure in the home, determined by parent or child reports and/or biochemically validated measures including cotinine, carbon monoxide or home air particulate matter. METHODS: Electronic searches of MEDLINE, EMBASE, PsychINFO, CINAHL and Web of Knowledge to July 2014, and hand searches of reference lists from publications included in the review were conducted. FINDINGS: Forty one studies were included in the review. Parental smoking, low socioeconomic status and being less educated were all frequently and consistently found to be independently associated with children's SHS exposure in the home. Children whose parents held more negative attitudes towards SHS were less likely to be exposed. Associations were strongest for parental cigarette smoking status; compared to children of non-smokers, those whose mothers or both parents smoked were between two and 13 times more likely to be exposed to SHS. CONCLUSION: Multiple factors are associated with child SHS exposure in the home; the best way to reduce child SHS exposure in the home is for smoking parents to quit. If parents are unable or unwilling to stop smoking, they should instigate smoke-free homes. Interventions targeted towards the socially disadvantaged parents aiming to change attitudes to smoking in the presence of children and providing practical support to help parents smoke outside the home may be beneficial

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    Application of Ligninolytic Enzymes in the Production of Biofuels from Cotton Wastes

    Get PDF
    The application of ligninolytic fungi and enzymes is an option to overcome the issues related with the production of biofuels using cotton wastes. In this dissertation, the ligninolytic fungus and enzymes were evaluated as pretreatment for the biochemical conversion of Cotton Gin Trash (CGT) in ethanol and as a treatment for the transformation of cotton wastes biochar in other substances. In biochemical conversion, seven combinations of three pretreatments (ultrasonication, liquid hot water and ligninolytic enzymes) were evaluated on CGT. The best results were achieved by the sequential combination of ultrasonication, hot water, and ligninolytic enzymes with an improvement of 10% in ethanol yield. To improve these results, alkaline-ultrasonication was evaluated. Additionally, Fourier Transform Infrared (FT-IR) and principal component analysis (PCA) were employed as fast methodology to identify structural differences in the biomass. The combination of ultrasonication-alkali hydrolysis, hot liquid water, and ligninolytic enzymes using 15% of NaOH improved 35% ethanol yield compared with the original treatment. Additionally, FT-IR and PCA identified modifications in the biomass structure after different types of pretreatments and conditions. In thermal conversion, this study evaluated the biodepolymerization of cotton wastes biochar using chemical and biological treatments. The chemical depolymerization evaluated three chemical agents (KMnO4, H2SO4, and NaOH), with three concentrations and two environmental conditions. The sulfuric acid treatments performed the largest transformations of the biochar solid phase; whereas, the KMnO4 treatments achieved the largest depolymerizations. The compounds released into the liquid phase were correlated with fulvic and humic acids and silicon compounds. The biological depolymerization utilized four ligninolytic fungi Phanerochaete chrysosporium, Ceriporiopsis subvermispora, Postia placenta, and Bjerkandera adusta. The greatest depolymerization was obtained by C. subvermispora. The depolymerization kinetics of C. subvermispora evidenced the production of laccase and manganese peroxidase and a correlation between depolymerization and production of ligninolytic enzymes. The modifications obtained in the liquid and solid phases showed the production of humic and fulvic acids from the cultures with C. subvermispora. The results of this research are the initial steps for the development of new processes using the ligninolytic fungus and their enzymes for the production of biofuels from cotton wastes

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p
    corecore