746 research outputs found

    High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of NRC Research Press for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 74 (2017): 240-255, doi:10.1139/cjfas-2015-0301.A dichotomy between depth penetration and resolution as a function of sonar frequency, draw resolution, and beam spread challenges fish target classification from sonar. Moving high-frequency sources to depth using autonomous underwater vehicles (AUVs) mitigates this and also co-locates transducers with other AUV-mounted short-range sensors to allow a holistic approach to ecological surveys. This widely available tool with a pedigree for bottom mapping is not commonly applied to fish reconnaissance and requires the development of an interpretation of pelagic reflective features, revisitation of count methods, image-processing rather than wave-form recognition for automation, and an understanding of bias. In a series of AUV mission test cases, side-scan sonar (600 and 900 kHz) returns often resolved individual school members, spacing, size, behavior, and (infrequently) species from anatomical features and could be intuitively classified by ecologists — but also produced artifacts. Fish often followed the AUV and thus were videographed, but in doing so removed themselves from the sonar aperture. AUV-supported high-frequency side-scan holds particular promise for survey of scarce, large species or for synergistic investigation of predators and their prey because the spatial scale of observations may be similar to those of predators.AUV missions were funded by an Office of Naval Research grant to the Woods Hole Oceanographic Institution and Rutgers University. The field work was supported by the Office of Naval Research under grant N00014-11-1-0160

    Lenvatinib and its use in the treatment of unresectable hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver accounting for approximately 90% of cases. Patients often present at an advanced stage when treatment options are limited. Sorafenib, a multitargeted tyrosine kinase inhibitor, has been the first-line treatment in this setting for almost a decade. Several subsequent targeted therapies have failed to demonstrate significant improvement in survival. The results of the REFLECT study suggest that lenvatinib, a multikinase inhibitor, may have promised as a first-line treatment in patients with advanced HCC. This article will review the development of lenvatinib and the evidence behind its potential use in patients with advanced HCC

    The St. Lawrence polynya and the Bering shelf circulation : new observations and a model comparison

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C09023, doi:10.1029/2005JC003268.Using 14 year-long instrumented moorings deployed south of St. Lawrence Island, along with oceanographic drifters, we investigate the circulation over the central Bering shelf and the role of polynyas in forming and disseminating saline waters over the shelf. We focus also on evaluating the Gawarkiewicz and Chapman [1995] model of eddy production within coastal polynyas. Principal results include: 1) The northern central shelf near-surface waters exhibit westward flow carrying low-salinity waters from the Alaskan coast in fall and early winter, with consequences for water mass formation and biological production. 2) Within the St. Lawrence polynya, the freshening effect of winter advection is about half as large as the salting effect of surface brine flux resulting from freezing. 3) Brine production over the Bering shelf occurs primarily offshore, rather than within coastal polynyas, even though ice production per unit area is much larger within the polynyas. 4) We find little evidence for the geostrophic flow adjustment predicted by recent polynya models. 5) In contrast to the theoretical prediction that dense water from the polynya is carried offshore by eddies, we find negligible cross-shelf eddy density fluxes within and surrounding the polynya and very low levels of eddy energy that decreased from fall to winter, even though dense water accumulated within the polynya and large cross-shore density gradients developed. 6) It is possible that dense polynya water was advected downstream of our array before appreciable eddy fluxes materialized.This work was supported by National Science Foundation grant OCE9730697 to the University of Alaska and grant OCE9730823 to the University of Washington. S. M. acknowledges the support of the National Science Foundation under OCE9811097 and of NASA under grant NNG04GM69G. The University of Hamburg contributions were funded by the Bundesminister für Bildung und Wissenschaft. Funding for the drifter deployment was made possible by the North Pacific Research Board, grant NPMRI T2130. Manuscript preparation was additionally supported by Office of Naval Research grants N00014-99-1-0345 and N00014-02-1-0305 to the University of Washington

    Application of quality by design tools to upstream processing of platelet precursor cells to enable in vitro manufacture of blood products

    Get PDF
    Annually 4.5 million platelet units are transfused in Europe and the United States. These are obtained solely from allogeneic donations and have a shelf life of 5-7 days. To address the corresponding supply challenge, Moreau et al.1 devised a novel process for producing megakaryocytes (MKs, the platelet precursor cell) in vitro. A transcription-factor driven, forward-programming (FOP) approach converts human pluripotent stem cells into MKs. This strategy has the unique advantage of generating high yields of pure MKs in chemically defined medium which could lead to the production of a consistent, reliable supply of platelets which overcomes the logistical, financial and biosafety challenges for health organisations worldwide. Here we follow a Quality by Design (QbD) approach to enable improvements to the upstream processing of FOPMKs. Firstly, we created a process flow diagram for production of in vitro platelets for transfusion, which segregated processes into individual unit operations for control and optimisation. Next, we developed a Quality Target Product Profile (QTPP) and identified Critical Quality Attributes (CQAs) for each stage. We conducted a range of experiments utilising Design of Experiments (DOE) and mechanistic modelling2 tools to link Critical Process Parameters (CPPs) to CQAs. For adherent culture, we identified a productivity limit related to surface area available for growth and a cell loss phase which was dependent on cell seeding density, RhoK inhibitor usage and seed density. Using suspension cultures of FOPMK. We noted that TPO and Doxycycline concentration were CPPs as these impacted cell net growth rate and phenotype trajectory. Furthermore, we noted that medium exhaustion led to a 30% loss of viable cells over 8 hours. Proof of concept studies also showed that FOPMKs can be cultured in scaled-down suspension systems (ambr-15 and spinner flask culture) whilst retaining CQAs. 1. Moreau, T. et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat. Commun. 7, 1–15 (2016). 2. Stacey, A. J., Cheeseman, E. A., Glen, K. E., Moore, R. L. L. & Thomas, R. J. Experimentally integrated dynamic modelling for intuitive optimisation of cell-based processes and manufacture. Biochem. Eng. J. 132, 130–138 (2018)

    Growing Three-Dimensional Corneal Tissue in a Bioreactor

    Get PDF
    Spheroids of corneal tissue about 5 mm in diameter have been grown in a bioreactor from an in vitro culture of primary rabbit corneal cells to illustrate the production of optic cells from aggregates and tissue. In comparison with corneal tissues previously grown in vitro by other techniques, this tissue approximates intact corneal tissue more closely in both size and structure. This novel three-dimensional tissue can be used to model cell structures and functions in normal and abnormal corneas. Efforts continue to refine the present in vitro method into one for producing human corneal tissue to overcome the chronic shortage of donors for corneal transplants: The method would be used to prepare corneal tissues, either from in vitro cultures of a patient s own cells or from a well-defined culture from another human donor known to be healthy. As explained in several articles in prior issues of NASA Tech Briefs, generally cylindrical horizontal rotating bioreactors have been developed to provide nutrient-solution environments conducive to the 30 NASA Tech Briefs, October 2003 growth of delicate animal cells, with gentle, low-shear flow conditions that keep the cells in suspension without damaging them. The horizontal rotating bioreactor used in this method, denoted by the acronym "HARV," was described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), NASA Tech Briefs, Vol. 16, No. 5 (May, 1992), page 150

    Interactions between interfaces dictate stimuli-responsive emulsion behaviour

    Get PDF
    Stimuli-responsive emulsions offer a dual advantage, combining long-term storage with controlled release triggered by external cues such as pH or temperature changes. This study establishes that thermo-responsive emulsion behaviour is primarily determined by interactions between, rather than within, interfaces. Consequently, the stability of these emulsions is intricately tied to the nature of the stabilizing microgel particles - whether they are more polymeric or colloidal, and the morphology they assume at the liquid interface. The colloidal properties of the microgels provide the foundation for the long-term stability of Pickering emulsions. However, limited deformability can lead to non-responsive emulsions. Conversely, the polymeric properties of the microgels enable them to spread and flatten at the liquid interface, enabling stimuli-responsive behaviour. Furthermore, microgels shared between two emulsion droplets in flocculated emulsions facilitate stimuli-responsiveness, regardless of their internal architecture. This underscores the pivotal role of microgel morphology and the forces they exert on liquid interfaces in the control and design of stimuli-responsive emulsions and interfaces.ISSN:2041-172

    Methods of photoelectrode characterization with high spatial and temporal resolution

    Get PDF
    Materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occur at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials
    • …
    corecore