797 research outputs found

    Structure of Extremely Nanosized and Confined In-O Species in Ordered Porous Materials

    Full text link
    Perturbed-angular correlation, x-ray absorption, and small-angle x-ray scattering spectroscopies were suitably combined to elucidate the local structure of highly diluted and dispersed InOx species confined in porous of ZSM5 zeolite. These novel approach allow us to determined the structure of extremely nanosized In-O species exchanged inside the 10-atom-ring channel of the zeolite, and to quantify the amount of In2O3 crystallites deposited onto the external zeolite surface.Comment: 4 pages, 5 postscript figures, REVTEX4, published in Physical Review Letter

    Solvent Mediated Assembly of Nanoparticles Confined in Mesoporous Alumina

    Full text link
    The controlled self-assembly of thiol stabilized gold nanocrystals in a mediating solvent and confined within mesoporous alumina was probed in situ with small angle x-ray scattering. The evolution of the self-assembly process was controlled reversibly via regulated changes in the amount of solvent condensed from an undersaturated vapor. Analysis indicated that the nanoparticles self-assembled into cylindrical monolayers within the porous template. Nanoparticle nearest-neighbor separation within the monolayer increased and the ordering decreased with the controlled addition of solvent. The process was reversible with the removal of solvent. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappeared upon complete removal of liquid. Measurements of the absorption and desorption of the solvent showed strong hysteresis upon thermal cycling. In addition, the capillary filling transition for the solvent in the nanoparticle-doped pores was shifted to larger chemical potential, relative to the liquid/vapor coexistence, by a factor of 4 as compared to the expected value for the same system without nanoparticles.Comment: 9 pages, 9 figures, appeared in Phys. Rev.

    Under-representation of males in the early years: the challenges leaders face

    Get PDF
    This article investigates why there appears to be an under-representation of males in comparison to their female colleagues in the Early Years (EY) sector, and the perception of male teachers progressing more quickly to leadership positions when they do enter this context. Using case studies of final year male students on an Initial Teacher Training (ITT) undergraduate degree course at one university, we attempt to analyse data on male under-representation in Early Years against contemporary theories of identity, power and leadership. Questionnaires and interviews were conducted with the male sample group and male senior leaders in primary schools to gain an overview as to the leadership support they needed and provided. Our tentative findings suggested that male trainees are happy to work in an Early Years context and take leadership positions, but the challenge for leaders is that male trainees require strong leadership mentoring processes to help overcome perceived contextual barriers

    pi-Conjugation and conformation in a semiconducting polymer: small angle x-ray scattering study

    Full text link
    Small angle X-ray scattering (SAXS) in poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) solution has shown the important role of pi-electron conjugation in controlling the chain conformation and assembly. By increasing the extent of conjugation from 30 to 100 %, the persistence length (l_p) increases from 20 to 66 Angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. Xylene enhances the rigidity of PPV backbone to yield extended structures, while tetrahydrofuran solvates the side groups to form compact coils in which the l_p is much shorter.Comment: accepted (J. Phy. Cond. Mat.

    Analysis of Granular Packing Structure by Scattering of THz Radiation

    Get PDF
    Scattering methods are widespread used to characterize the structure and constituents of matter on small length scales. This motivates this introductory text on identifying prospective approaches to scattering-based methods for granular media. A survey to light scattering by particles and particle ensembles is given. It is elaborated why the established scattering methods using X-rays and visible light cannot in general be transferred to granular media. Spectroscopic measurements using Terahertz radiation are highlighted as they to probe the scattering properties of granular media, which are sensitive to the packing structure. Experimental details to optimize spectrometer for measurements on granular media are discussed. We perform transmission measurements on static and agitated granular media using Fourier-transform spectroscopy at the THz beamline of the BessyII storage ring. The measurements demonstrate the potential to evaluate degrees of order in the media and to track transient structural states in agitated bulk granular media.Comment: 12 Pages, 9 Figures, 56 Reference

    Policy, Performativity and Partnership: an Ethical Leadership Perspective

    Get PDF
    This article identifies the need to think differently about educational partnerships in a changing and turbulent post compulsory policy environment in England. The policy and institutional contexts in which universities and colleges currently operate seem to be fuelling performativity at the expense of educational values. There appears to be a sharp interruption in the steady increase in educational partnerships as a vehicle for increasing and widening participation in higher education. We are witnessing a marked change in university / college relationships that appears to be a consequence of government calling a halt to increased participation in higher education, creating an increasingly competitive market for a more limited pool of student places. The implication that educational policy at the national level determines a particular pattern or mode of leadership decision making throughout an institution should however be resisted. Policy developments that challenge the moral precepts of education should not be allowed to determine how a leader acts, rather they should prompt actions that are truly educational, rooted in morality, and atached to identifiable educational values. Educational leaders have agency to resist restricted discourses in favour of ethical and principled change strategies that are a precondition for sustainable transformative partnerships in post compulsory education. University leaders in particular are called upon to use their considerable influence to resist narrow policy or managerial instrumentalism or performativity and embrace alternatives that are both educationally worthwhile and can enhance institutional resilience

    Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

    Get PDF
    Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 °C (in air atmosphere also). The size distribution was obtained by fitting SAXS experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 - 0.6) nm with polydispersivity given by sigma= (8.0 ± 0.2) nm. The SAXS, XRD and TEM experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 mm, obtained by SEM; aspect ratio=length/diameter ~10) were obtained at 85 ÂșC and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance spectra (FMR) and strain-stress curves of low fillerÂŽs loading composites (2% w/w of fillers) were determined as functions of the relative orientation respect to the needles. The results indicate that even at low loadings it is possible to obtain magnetorheological composites with anisotropic properties, with larger anisotropy when using nanochains. For instance, the magnetic remanence, the FMR-resonance field and the elastic response to compression are higher when measured parallel to the needles (about 30% with nanochains as fillers). Analogously, the elastic response is also anisotropic, with larger anisotropy when using nanochains as fillers. Therefore, all experiments performed confirm the high potential of nickel nanochains to induce anisotropic effects in magnetorheological materials.Fil: Landa, Romina AilĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de QuĂ­mica FĂ­sica de los Materiales del Medioambiente y EnergĂ­a; Argentina;Fil: P Soledad Antonel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de QuĂ­mica FĂ­sica de los Materiales del Medioambiente y EnergĂ­a; Argentina;Fil: Mariano M. Ruiz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de QuĂ­mica FĂ­sica de los Materiales del Medioambiente y EnergĂ­a; Argentina;Fil: Oscar E PĂ©rez. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Industrias;Fil: Alejandro Butera. ComisiĂłn Nacional de EnergĂ­a AtĂłmica;Fil: Guillermo Jorge. Universidad Nacional de General Sarmiento;Fil: Cristiano L. P. Oliveira. Instituto de FĂ­sica, Universidade De SĂŁo Paulo; Brasil;Fil: MartĂ­n Negri. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Industrias

    ABC Triblock Copolymer Worms: Synthesis, Characterization, and Evaluation as Pickering Emulsifiers for Millimeter-Sized Droplets

    Get PDF
    Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition–fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via “seeded” RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks—instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA–PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions

    A noncanonical cytochrome c stimulates calcium binding by PilY1 for type IVa pili formation

    Get PDF
    Type IVa pili (T4aP) are versatile bacterial cell surface structures that undergo extension/adhesion/retraction cycles powered by the cell envelope–spanning T4aP machine. In this machine, a complex composed of four minor pilins and PilY1 primes T4aP extension and is also present at the pilus tip mediating adhesion. Similar to many several other bacteria, Myxococcus xanthus contains multiple minor pilins/PilY1 sets that are incompletely understood. Here, we report that minor pilins and PilY1 (PilY1.1) of cluster_1 form priming and tip complexes contingent on calcium and a noncanonical cytochrome c (TfcP) with an unusual His/Cys heme ligation. We provide evidence that TfcP is unlikely to participate in electron transport and instead stimulates calcium binding by PilY1.1 at low-calcium concentrations, thereby stabilizing PilY1.1 and enabling T4aP function in a broader range of calcium concentrations. These results not only identify a previously undescribed function of cytochromes c but also illustrate how incorporation of an accessory factor expands the environmental range under which the T4aP system functions
    • 

    corecore