231 research outputs found

    High brightness laser-plasma X-ray source at IFAM : Characterization and applications

    Get PDF
    A high brightness laser-plasma X-ray source has been set-up and is presently available at IFAM. A wide range of diagnostics has been set up to monitor the properties of the X-ray radiation and to control the main parameters including photon energy, flux intensity, and pulse duration. A beam extractor enables access to the X-ray radiation at atmospheric pressure. A simple, easy-to-use projection microscope has been built which is capable of single-shot micron resolution imaging with digital acquisition. Preliminary biomedical experiments show that the X-ray doses available on a single laser shot exposure of our source fully meet the conditions required for an important class of biological experiments based on X-ray induced DNA damage providing an ideal alternative to the long time exposures needed with X-ray tubes

    Nonlinear diffusion & thermo-electric coupling in a two-variable model of cardiac action potential

    Full text link
    This work reports the results of the theoretical investigation of nonlinear dynamics and spiral wave breakup in a generalized two-variable model of cardiac action potential accounting for thermo-electric coupling and diffusion nonlinearities. As customary in excitable media, the common Q10 and Moore factors are used to describe thermo-electric feedback in a 10-degrees range. Motivated by the porous nature of the cardiac tissue, in this study we also propose a nonlinear Fickian flux formulated by Taylor expanding the voltage dependent diffusion coefficient up to quadratic terms. A fine tuning of the diffusive parameters is performed a priori to match the conduction velocity of the equivalent cable model. The resulting combined effects are then studied by numerically simulating different stimulation protocols on a one-dimensional cable. Model features are compared in terms of action potential morphology, restitution curves, frequency spectra and spatio-temporal phase differences. Two-dimensional long-run simulations are finally performed to characterize spiral breakup during sustained fibrillation at different thermal states. Temperature and nonlinear diffusion effects are found to impact the repolarization phase of the action potential wave with non-monotone patterns and to increase the propensity of arrhythmogenesis

    Experimental study of picosecond laser plasma formation in thin foils

    Get PDF
    A high performance, fully controlled picosecond laser system has been designed and built with the aid of a numerical code capable of simulating the temporal behavior of the laser system, including each active and passive component. The laser performance was characterized with an optical streak camera, equivalent plane monitor, and calorimeter measurements. The laser pulse was focused on 150-nm thick foils to investigate plasma formation and the related transmittivity of the laser light. The experimental data are in very good agreement with the predictions of a simple, 2D analytical model that takes into account the actual shot-to-shot features of the laser pulse. The temporal profile of the pulse and the intensity distribution in the focal spot were found to play a key role in determining the transmission properties of the laser-irradiated foil. This work may be relevant to a wide class of laser exploded foil plasma experiments

    Line spectroscopy with spatial resolution of laser-plasma X-ray emission

    Get PDF
    High dynamic range, space-resolved X-ray spectra of an aluminum laser–plasma in the 5.5–8 Å range were obtained using a TlAP crystal and a cooled CCD camera as a detector. This technique was used to investigate the emission region in the longitudinal direction over a distance of approximately 350 μm from the solid target surface. These data show that the electron density profile varies by two orders of magnitude with the temperature ranging from about 180 eV in the overdense region to about 650 eV in the underdense region. Accordingly, different equilibria take place across the explored region which can be identified with this experimental technique. Detailed studies on highly ionized atomic species in different plasma conditions can therefore be performed simultaneously under controlled conditions

    Vitamin D3 as possible diagnostic marker of Eating Disorders

    Get PDF
    Abstract Purpose Eating Disorders (EDs) refer to a group of psychiatric conditions in which disorderly food intake results in impaired psychological functioning or physical health. Nowadays, these disorders represent an increasing problem in modern society. There are no universally validated clinical parameters to confirm, disprove or simply help to identify EDs except for diagnostic criteria on psychiatric basis. The aim of this study was the assessment of Vitamin D3 level in patients with EDs to understand if it might be a valid clinical biochemistry parameter useful as prognostic marker. Methods The sample consists of 28 female patients, who suffer from EDs. Blood samples were examined in terms of blood count, glucose, cholesterol and Vitamin D3 levels. The other clinical biochemistry parameters were analysed to understand if the Vitamin D3 was the only altered parameter. Results The parameters that appear altered are glycemia, cholesterol and, in particular, Vitamin D3. Significant results were obtained comparing controls with restrictive-type anorexia nervosa (p value= 0,003) and with purging-type anorexia nervosa (p value= 0,007). Conclusion There are currently no universally validated and diagnostic reliable clinical biochemistry parameters for EDs but, in the light of the findings, but our research indicates the potential use of Vitamin D3 as a biomarker for anorexia nervosa. Level of evidence Level III: Evidence obtained from a single-center cohort study

    Experimental investigation of fast electron transport in solid density matter: Recent results from a new technique of X-ray energy-encoded 2D imaging

    Get PDF
    AbstractThe development activity of a new experimental technique for the study of the fast electron transport in high density matter is reported. This new diagnostic tool enables the X-ray 2D imaging of ultrahigh intensity laser plasmas with simultaneous spectral resolution in a very large energy range to be obtained. Results from recent experiments are discussed, in which the electron propagation in multilayer targets was studied by using the Kα. In particular, results highlighting the role of anisotropic Bremsstrahlung are reported, for the sake of the explanation of the capabilities of the new diagnostics. A discussion of a test experiment conceived to extend the technique to a single-shot operation is finally given

    The influence of footwear on the modular organization of running

    Get PDF
    For most of our history, we predominantly ran barefoot or in minimalist shoes. The advent of modern footwear, however, might have introduced alterations in the motor control of running. The present study investigated shod and barefoot running under the perspective of the modular organization of muscle activation, in order to help addressing the neurophysiological factors underlying human locomotion. On a treadmill, 20 young and healthy inexperienced barefoot runners ran shod and barefoot at preferred speed (2.8 ± 0.4 m/s). Fundamental synergies, containing the time-dependent activation coefficients (motor primitives) and the time-invariant muscle weightings (motor modules), were extracted from 24 ipsilateral electromyographic activities using non-negative matrix factorization. In shod running, the average foot strike pattern was a rearfoot strike, while in barefoot running it was a mid-forefoot strike. In both conditions, five fundamental synergies were enough to describe as many gait cycle phases: weight acceptance, propulsion, arm swing, early swing and late swing. We found the motor primitives to be generally shifted earlier in time during the stance-related phases and later in the swing-related ones in barefoot running. The motor primitive describing the propulsion phase was significantly of shorter duration (peculiarity confirmed by the analysis of the spinal motor output). The arm swing primitive, instead, was significantly wider in the barefoot condition. The motor modules demonstrated analogous organization with some significant differences in the propulsion, arm swing and late swing synergies. Other than to the trivial absence of shoes, the differences might be deputed to the lower ankle gear ratio (and the consequent increased system instability) and to the higher recoil capabilities of the longitudinal foot arch during barefoot compared to shod running. © 2017 Santuz, Ekizos, Janshen, Baltzopoulos and Arampatzis

    Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions

    Get PDF
    The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~1020 W/cm2. The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear

    Eupraxia, a step toward a plasma-wakefield based accelerator with high beam quality

    Get PDF
    The EuPRAXIA project aims at designing the world's first accelerator based on advanced plasma-wakefield techniques to deliver 5 GeV electron beams that simultaneously have high charge, low emittance and low energy spread, which are required for applications by future user communities. Meeting this challenging objective will only be possible through dedicated effort. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European research institutes. This enables selection of the most appropriate methods for solving each particular problem. The specific challenge of generating, extracting and transporting high charge beams, while maintaining the high quality needed for user applications, are being tackled using innovative approaches. This article highlights preliminary results obtained by the EuPRAXIA collaboration, which also exhibit the required laser and plasma parameters
    corecore