137 research outputs found

    Kinect-based Solution for the Home Monitoring of Gait and Balance in Elderly People with and without Neurological Diseases

    Get PDF
    Alterations of gait and balance are a significant cause of falls, injuries, and consequent hospitalizations in the elderly. In addition to age-associated motor decline, other factors can impact gait and stability, including the motor dysfunctions caused by neurological diseases such as Parkinson’s disease or hemiplegia after stroke. Monitoring changes and deterioration in gait patterns and balance is crucial for activating rehabilitation treatments and preventing serious consequences. This work presents a Kinect-based solution, suitable for domestic contexts, for assessing gait and balance in individuals at risk of falling. The system captures body movements during home acquisition sessions scheduled by clinicians at definite times of the day and automatically estimates specific functional parameters to objectively characterize the subjects’ performance. The system includes a graphical user interface designed to ensure usability in unsupervised contexts: the human-computer interaction mainly relies on natural body movements to support the self-management of the system, if the motor conditions allow it. This work presents the system’s features and facilities, and the preliminary results on healthy volunteers’ trials

    GMH-D: Combining Google MediaPipe and RGB-Depth Cameras for Hand Motor Skills Remote Assessment

    Get PDF
    Impairment in the execution of simple motor tasks involving hands and fingers could hint at a general worsening of health conditions, particularly in the elderly and in people affected by neurological diseases. The deterioration of hand motor function strongly impacts autonomy in daily activities and, consequently, the perceived quality of life. The early detection of alterations in hand motor skills would allow, for example, to promptly activate treatments and mitigate this discomfort. This preliminary study examines an innovative pipeline based on a single RGB-Depth camera and Google MediaPipe Hands, that is suitable for the remote assessment of hand motor skills through simple tasks commonly used in clinical practice. The study includes several phases. First, the quality of hand tracking is evaluated by comparing reconstructed and real hand 3D trajectories. The proposed solution is then tested on a cohort of healthy volunteers to estimate specific kinematic features for each task. Finally, these features are used to train supervised classifiers and distinguish between “normal” and “altered” performance by simulating typical motor behaviour of real impaired subjects. The preliminary results show the ability of the proposed solution to automatically highlight alterations in hand performance, providing an easy-to-use and non-invasive tool suitable for remote monitoring of hand motor skills

    Hand tracking for clinical applications: validation of the Google MediaPipe Hand (GMH) and the depth-enhanced GMH-D frameworks

    Full text link
    Accurate 3D tracking of hand and fingers movements poses significant challenges in computer vision. The potential applications span across multiple domains, including human-computer interaction, virtual reality, industry, and medicine. While gesture recognition has achieved remarkable accuracy, quantifying fine movements remains a hurdle, particularly in clinical applications where the assessment of hand dysfunctions and rehabilitation training outcomes necessitate precise measurements. Several novel and lightweight frameworks based on Deep Learning have emerged to address this issue; however, their performance in accurately and reliably measuring fingers movements requires validation against well-established gold standard systems. In this paper, the aim is to validate the handtracking framework implemented by Google MediaPipe Hand (GMH) and an innovative enhanced version, GMH-D, that exploits the depth estimation of an RGB-Depth camera to achieve more accurate tracking of 3D movements. Three dynamic exercises commonly administered by clinicians to assess hand dysfunctions, namely Hand Opening-Closing, Single Finger Tapping and Multiple Finger Tapping are considered. Results demonstrate high temporal and spectral consistency of both frameworks with the gold standard. However, the enhanced GMH-D framework exhibits superior accuracy in spatial measurements compared to the baseline GMH, for both slow and fast movements. Overall, our study contributes to the advancement of hand tracking technology, the establishment of a validation procedure as a good-practice to prove efficacy of deep-learning-based hand-tracking, and proves the effectiveness of GMH-D as a reliable framework for assessing 3D hand movements in clinical applications

    User Plane Function Offloading in P4 switches for enhanced 5G Mobile Edge Computing

    Get PDF
    This demo shows a 5G X-haul testbed enhanced with P4 switches implementing the offloading of the User Plane Function module. The P4 code includes GTP protocol encapsulation/decapsulation function, fully configurable N3-N6-N9 steering, and advanced online monitoring of the experienced latency metadata

    Subsidence due to peatland oxidation in the Venice Lagoon catchment

    Get PDF
    Abstract. The Venice Lagoon is characterized by a fast morphodynamics appreciable not only over the geological scale but also in historical and modern times. The lagoon environment proves very sensitive to even minor modifications of the natural and anthropogenic controlling factors. An important human endeavor accomplished in the past century is the reclamation of the southernmost lagoon area that has been turned into a fertile farmland. The reclaimed soil is reach in organic matter (peat) that may oxidize with release of carbon dioxide to the atmosphere. The continuous loss of carbon is causing a pronounced settlement of the farmland that lies below the present sea/lagoon level. This enhances the flood hazard and impacts noticeably on the maintenance and operational costs of the drainage system. Total peatland subsidence is estimated at 1.5 m over the last 70 years with a current rate of 1.5-2 cm/year. The geochemical reaction is primarily controlled by soil water content and temperature, and is much influenced by agricultural practices, crop rotation, and depth to the water table. A small (24 km2) controlled catchment located in the area has been instrumented for accurately monitoring the basic parameters and recording the ground motion. The in situ measurements have been integrated with the combined use of remote sensing data to help cast light on the process and identify the mitigation strategies.Published81-906A. Monitoraggio ambientale, sicurezza e territorioope

    Evaluation of Arm Swing Features and Asymmetry during Gait in Parkinson’s Disease Using the Azure Kinect Sensor

    Get PDF
    Arm swinging is a typical feature of human walking: Continuous and rhythmic movement of the upper limbs is important to ensure postural stability and walking efficiency. However, several factors can interfere with arm swings, making walking more risky and unstable: These include aging, neurological diseases, hemiplegia, and other comorbidities that affect motor control and coordination. Objective assessment of arm swings during walking could play a role in preventing adverse consequences, allowing appropriate treatments and rehabilitation protocols to be activated for recovery and improvement. This paper presents a system for gait analysis based on Microsoft Azure Kinect DK sensor and its body-tracking algorithm: It allows noninvasive full-body tracking, thus enabling simultaneous analysis of different aspects of walking, including arm swing characteristics. Sixteen subjects with Parkinson’s disease and 13 healthy controls were recruited with the aim of evaluating differences in arm swing features and correlating them with traditional gait parameters. Preliminary results show significant differences between the two groups and a strong correlation between the parameters. The study thus highlights the ability of the proposed system to quantify arm swing features, thus offering a simple tool to provide a more comprehensive gait assessment

    A service-oriented hybrid access network and clouds architecture

    Get PDF
    Many telecom operators are deploying their own cloud infrastructure with the two-fold objective of providing cloud services to their customers and enabling network function virtualization. In this article we present an architecture we call SHINE, which focuses on orchestrating cloud with heterogeneous access and core networks. In this architecture intra and inter DC connectivity is dynamically controlled, maximizing the overall performance in terms of throughput and latency while minimizing total costs. The main building blocks are: a future-proof network architecture that can scale to offer potentially unlimited bandwidth based on an active remote node (ARN) to interface end-users and the core network; an innovative distributed DC architecture consisting of micro-DCs placed in selected core locations to accelerate content delivery, reducing core network traffic, and ensuring very low latency; and dynamic orchestration of the distributed DC and access and core network segments. SHINE will provide unprecedented quality of experience, greatly reducing costs by coordinating network and cloud and facilitating service chaining by virtualizing network functions.Peer ReviewedPostprint (author’s final draft

    Imported Loa Loa Filariasis: Three Cases and a Review of Cases Reported in Non-Endemic Countries in the Past 25 Years

    Get PDF
    Summary Objectives The aim of this study was to highlight the increasing chance of Western physicians encountering patients (both immigrants and expatriates/travelers) seeking help for loiasis. Methods We describe three cases of imported loiasis observed at two hospitals in Italy and France, and present a review of all previously published cases in the medical literature in the last 25 years (1986–2011). The search was performed using PubMed and Scopus databases using the terms " Loa loa " AND "loiasis". Results We reviewed 101 cases of imported loiasis of which 61 (60.4%) were reported from Europe and 31 (30.7%) from the USA. Seventy-five percent of infestations were acquired in three countries: Cameroon, Nigeria, and Gabon. Overall, peripheral blood microfilariae were detected in 61.4% of patients, eosinophilia in 82.1%, eye worm migration in 53.5%, and Calabar swellings in 41.6%. However, Calabar swellings and eosinophilia were more common among expatriates/travelers, whereas African immigrants were more likely to have microfilaremia. Eye worm migration was observed in a similar proportion in the two groups. Only 35 patients (including the three described here) underwent clinical follow-up for a median period of 10.5 months (range 1–84 months); clinical relapse occurred in three of these patients and persistence or reappearance of blood microfilaria in another two. Conclusions Due to increasing travel and the migration of people from the endemic countries of West Africa to Europe and the USA, we speculate on the possible emergence of loiasis. Western physicians should be aware of the typical (eye worm migration and Calabar swellings) as well as unusual clinical presentations

    Madama Butterfly

    Get PDF
    De cada obra s'ha digitalitzat un programa sencer. De la resta s'han digitalitzat les parts que són diferents.Direcció: Franco Ferraris ; Direcció escènica: Frans BoerlageEmpresa: Juan A. PamiasÒpera de Giacomo Puccini amb llibret de Giuseppe Giacosa i Luigi Illic
    • …
    corecore