2,897 research outputs found

    The supergiant fast X-ray transients XTE J1739-302 and IGR J08408-4503 in quiescence with XMM-Newton

    Full text link
    Context. Supergiant fast X-ray transients are a subclass of high mass X-ray binaries that host a neutron star accreting mass from the wind of its OB supergiant companion. They are characterized by an extremely pronounced and rapid variability in X-rays, which still lacks an unambiguous interpretation. A number of deep pointed observations with XMM-Newton have been carried out to study the quiescent emission of these sources and gain insight into the mechanism that causes their X-ray variability. Aims. We continued this study by using three XMM-Newton observations of the two supergiant fast X-ray transient prototypes XTEJ1739-302 and IGR J08408-4503 in quiescence. Methods. An in-depth timing and spectral analysis of these data have been carried out. Results. We found that the quiescent emission of these sources is characterized by both complex timing and spectral variability, with multiple small flares occurring sporadically after periods of lower X-ray emission. Some evidence is found in the XMM-Newton spectra of a soft component below ~2 keV, similar to that observed in the two supergiant fast X-ray transients AXJ1845.0-0433 and IGRJ16207-5129 and in many other high mass X-ray binaries. Conclusions.We suggest some possible interpretations of the timing and spectral properties of the quiescent emission of XTEJ1739- 302 and IGR J08408-4503 in the context of the different theoretical models proposed to interpret the behavior of the supergiant fast X-ray transients.Comment: 13 pages, 14 figures. Accepted for publication in A&A. V2: Corrected few typo

    A joint coregistration of rotated multitemporal SAR images based on the cross-cross-correlation

    Get PDF
    Accurate synthetic aperture radar (SAR) images coregistration is on the base of several remote sensing applications, such as interferometry, change detection, etc. This paper proposes a new algorithm for jointly coregister a stack of multitemporal SAR images exploiting the cross-correlations computed for each couple of patches' cross-correlation. By doing so, the method is capable of exploit also the respective misregistration information between the slave during the estimation process. This methodology is applied to improve the performance of the constrained Least Squares (CLS) optimization method that does not account for the reciprocal information related to the slaves. Tests on real-recorded data shown the benefits of the proposed method in terms of root mean square error (RMSE) for images affected by respective rotations

    The supergiant fast X-ray transient IGR J18483−0311 in quiescence: XMM-Newton, Swift and Chandra observations

    Get PDF
    IGR J18483−0311 was discovered with INTEGRAL in 2003 and later classified as a supergiant fast X-ray transient. It was observed in outburst many times, but its quiescent state is still poorly known. Here, we present the results of XMM-Newton, Swift and Chandra observations of IGR J18483−0311. These data improved the X-ray position of the source, and provided new information on the timing and spectral properties of IGR J18483−0311 in quiescence. We report the detection of pulsations in the quiescent X-ray emission of this source, and give for the first time a measurement of the spin-period derivative of this source. In IGR J18483−0311, the measured spin-period derivative of −(1.3 ± 0.3) × 10−9 s s−1 likely results from light travel time effects in the binary. We compare the most recent observational results of IGR J18483−0311 and SAX J1818.6−1703, the two supergiant fast X-ray transients for which a similar orbital period has been measure

    Electron Wave Function in Armchair Graphene Nanoribbons

    Full text link
    By using analytical solution of a tight-binding model for armchair nanoribbons, it is confirmed that the solution represents the standing wave formed by intervalley scattering and that pseudospin is invariant under the scattering. The phase space of armchair nanoribbon which includes a single Dirac singularity is specified. By examining the effects of boundary perturbations on the wave function, we suggest that the existance of a strong boundary potential is inconsistent with the observation in a recent scanning tunneling microscopy. Some of the possible electron-density superstructure patterns near a step armchair edge located on top of graphite are presented. It is demonstrated that a selection rule for the G band in Raman spectroscopy can be most easily reproduced with the analytical solution.Comment: 7 pages, 4 figure

    X-ray Pulsations from the region of the Supergiant Fast X-ray Transient IGR J17544-2619

    Get PDF
    Phase-targeted RXTE observations have allowed us to detect a transient 71.49 \pm 0.02 s signal that is most likely to be originating from the supergiant fast X-ray transient IGR J17544-2619. The phase-folded light curve shows a possible double-peaked structure with a pulsed flux of ~4.8*10^-12 erg cm^-2 s^-1 (3-10 keV). Assuming the signal to indicate the spin period of the neutron star in the system, the provisional location of IGR J17544-2619 on the Corbet diagram places the system within the classical wind-fed supergiant XRB region. Such a result illustrates the growing trend of supergiant fast X-ray transients to span across both of the original classes of HMXB in Porb - Pspin space.Comment: 7 pages, 6 figures, Accepted for publication in Astronomy and Astrophysics main journa

    Provinciality and the Art World: The Midland Group 1961- 1977

    Get PDF
    This paper takes as its focus the Midland Group Gallery in order to first, make a case for the consideration of the geographies of art galleries. Second, highlight the importance of galleries in the context of cultural geographies of the sixties. Third, discuss the role of provinciality in the operation of art worlds. In so doing it explicates one set of geographies surrounding the gallery – those of the local, regional and international networks that connected to produce art works and art space. It reveals how the interactions between places and practices outside of metropolitan and regional hierarchies provides a more nuanced insight into how art worlds operated during the sixties, a period of growing internationalism of art, and how contested definitions of the provincial played an integral role in this. The paper charts the operations of the Midland Group Gallery and the spaces that it occupied to demonstrate how it was representative of a post-war discourse of provincialism and a corresponding re-evaluation of regional cultural activity

    Cadmium Telluride Quantum Dots as a Fluorescence Marker for Adipose Tissue Grafts

    Get PDF
    Plastic and reconstructive surgeons increasingly apply adipose tissue grafting in a clinical setting, although the anticipation of graft survival is insecure. There are only few tools for tracking transplanted fat grafts in vivo. Murine adipose tissue clusters were incubated with negatively charged, mercaptoproprionic acid-coated cadmium telluride quantumdots (QDs) emitting in the dark red or near infrared. The intracellular localization of QDs was studied by confocal laser scanning microscopy. As a result, the adipose tissue clusters showed a proportional increase in fluorescence with increasing concentrations (1, 10, 16, 30, 50 nM) of cadmium telluride QDs. Laser scanning microscopy demonstrated a membrane bound localization of QDs. Vacuoles and cell nuclei of adipocytes were spared by QDs. We conclude that QDs were for the first time proven intracellular in adult adipocytes and demonstrate a strong fluorescence signal. Therefore, they may play an essential role for in vivo tracking of fat grafts

    The supergiant fast X-ray transient IGRJ18483-0311 in quiescence: XMM-Newton, Swift, and Chandra observations

    Get PDF
    IGR J18483-0311 was discovered with INTEGRAL in 2003 and later classified as a supergiant fast X-ray transient. It was observed in outburst many times, but its quiescent state is still poorly known. Here we present the results of XMM-Newton, Swift, and Chandra observations of IGRJ18483-0311. These data improved the X-ray position of the source, and provided new information on the timing and spectral properties of IGR J18483-0311 in quiescence. We report the detection of pulsations in the quiescent X-ray emission of this source, and give for the first time a measurement of the spin-period derivative of this source. In IGRJ18483-0311 the measured spin-period derivative of -(1.3+-0.3)x10^(-9) s/s likely results from light travel time effects in the binary. We compare the most recent observational results of IGRJ18483-0311 and SAXJ1818.6-1703, the two supergiant fast X-ray transients for which a similar orbital period has been measured.Comment: Accepted for publication in MNRA

    Optical clock intercomparison with 6×10−196\times 10^{-19} precision in one hour

    Full text link
    Improvements in atom-light coherence are foundational to progress in quantum information science, quantum optics, and precision metrology. Optical atomic clocks require local oscillators with exceptional optical coherence due to the challenge of performing spectroscopy on their ultra-narrow linewidth clock transitions. Advances in laser stabilization have thus enabled rapid progress in clock precision. A new class of ultrastable lasers based on cryogenic silicon reference cavities has recently demonstrated the longest optical coherence times to date. In this work we utilize such a local oscillator, along with a state-of-the-art frequency comb for coherence transfer, with two Sr optical lattice clocks to achieve an unprecedented level of clock stability. Through an anti-synchronous comparison, the fractional instability of both clocks is assessed to be 4.8×10−17/τ4.8\times 10^{-17}/\sqrt{\tau} for an averaging time τ\tau in seconds. Synchronous interrogation reveals a quantum projection noise dominated instability of 3.5(2)×10−17/τ3.5(2)\times10^{-17}/\sqrt{\tau}, resulting in a precision of 5.8(3)×10−195.8(3)\times 10^{-19} after a single hour of averaging. The ability to measure sub-10−1810^{-18} level frequency shifts in such short timescales will impact a wide range of applications for clocks in quantum sensing and fundamental physics. For example, this precision allows one to resolve the gravitational red shift from a 1 cm elevation change in only 20 minutes
    • …
    corecore