13 research outputs found

    Lack of Phylogeographic Structure in the Freshwater Cyanobacterium Microcystis aeruginosa Suggests Global Dispersal

    Get PDF
    Background : Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography. Methodology/Principal Findings : The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected. Conclusions/Significance : The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution

    Functional redundancy increases towards the tropics in lake phytoplankton

    No full text
    It has been suggested that the overwhelming number of species in tropical ecosystems consist largely of "neutral" and functionally equivalent species. In phytoplankton, differences in functionality have been shown to be clearly distinguishable from morphological traits. Here we examine whether the increase in species towards the tropics goes together with an increase in functional richness or not. We analyse the latitudinal distribution of phytoplankton morphology-based functional groups (MBFG), the within-group richness and community morphological traits in 83 shallow lakes across South America (5-55°S). We further looked into explaining environmental variables. Despite the increment in species richness towards the (sub)tropics, the average number of MBFG remained constant. Furthermore, size average and variance decreased towards warmer regions. In warm lakes, phytoplankton communities were species rich but redundant in terms of belonging to a MBFG. Increasing species richness only translated into increasing number of rare species in some of the MBFG. In contrast, cold lakes were species poor but less redundant (i.e. essential to maintain the number of MBFG) and had a higher morphological variability. Our results support the hypothesis of higher functional redundancy in warmer areas and the relevance of increasing herbivory in colder regions as a main driving process of latitudinal patterns.</p

    High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes : evidence from lakes, fish exclosures and surface sediments

    No full text
    The mean body size of limnetic cladocerans decreases from cold temperate to tropical regions, in both the northern and the southern hemisphere. This size shift has been attributed to both direct (e.g. physiological) or indirect (especially increased predation) impacts. To provide further information on the role of predation, we compiled results from several studies of subtropical Uruguayan lakes using three different approaches: (i) field observations from two lakes with contrasting fish abundance, Lakes Rivera and RodoÂŽ, (ii) fish exclusion experiments conducted in in-lake mesocosms in three lakes, and (iii) analyses of the Daphnia egg bank in the surface sediment of eighteen lakes. When fish predation pressure was low due to fish kills in Lake Rivera, large-bodied Daphnia appeared. In contrast, small-sized cladocerans were abundant in Lake RodoÂŽ, which exhibited a typical high abundance of fish. Likewise, relatively large cladocerans (e.g. Daphnia and Simocephalus) appeared in fishless mesocosms after only 2 weeks, most likely hatched from resting egg banks stored in the surface sediment, but their abundance declined again after fish stocking. Moreover, field studies showed that 9 out of 18 Uruguayan shallow lakes had resting eggs of Daphnia in their surface sediment despite that this genus was only recorded in three of the lakes in summer water samples, indicating that Daphnia might be able to build up populations at low risk of predation. Our results show that medium and large-sized zooplankton can occur in subtropical lakes when fish predation is removed. The evidence provided here collectively confirms the hypothesis that predation, rather than high-temperature induced physiological constraints, is the key factor determining the dominance of smallsized zooplankton in warm lakes

    Environmental rather than spatial factors structure bacterioplankton communities in shallow lakes along a >6,000 km latitudinal gradient in South-America

    No full text
    Metacommunity studies on lake bacterioplankton indicate the importance of environmental factors in structuring communities. Yet most of these studies cover relatively small spatial scales. We assessed the relative importance of environmental and spatial factors in shaping bacterioplankton communities across a > 6000 km latitudinal range, studying 48 shallow lowland lakes in the tropical, tropicali (isothermal subzone of the tropics) and tundra climate regions of South America using denaturing gradient gel electrophoresis. Bacterioplankton community composition (BCC) differed significantly across regions. Although a large fraction of the variation in BCC remained unexplained, the results supported a consistent significant contribution of local environmental variables and to a lesser extent spatial variables, irrespective of spatial scale. Upon correction for space, mainly biotic environmental factors significantly explained the variation in BCC. The abundance of pelagic cladocerans remained particularly significant, suggesting grazer effects on bacterioplankton communities in the studied lakes. These results confirm that bacterioplankton communities are predominantly structured by environmental factors, even over a large-scale latitudinal gradient (6026 km), and stress the importance of including biotic variables in studies that aim to understand patterns in BCC.status: publishe
    corecore