14 research outputs found

    Mass Transport In Intrinsically Conducting Polymers: Importance, Techniques And Theoretical Models [transporte De Massa Em Polímeros Intrinsecamente Condutores: Importância, Técnicas E Modelos Teóricos]

    No full text
    In this work we discuss the aspects related to the phenomenon of mass transport in thin electroactive polymer films. Such phenomenon must be considered because the properties and consequent applications of these materials largely depend on the movement of charge carriers, i.e. ions, electrons or holes. The most recent majority of the techniques, methods and theoretical models used in this type of study are gathered and discussed, providing an easy and critical way for choosing the methodology for an investigation.223358368De Paoli, M.-A., Silva, G.G., Lemes, N.H.T., Polo Da Fonseca, C.M.N., (1997) Solid State Ionics, 93, p. 105De Paoli, M.-A., Wolfenson, A.E., Torresi, R.M., Bonagamba, T.J., Panepucci, H., (1997) J. Phys. Chem. B., 101, p. 3469Li-Ming, D., Jing, S., Yun-Qing, L., Cheng-Zong, Y., (1997) Huaxue Xuebao, 55, p. 254Chemical Abstracts, 126, p. 238940Masayoshi, W., (1997) Netsu Sokutei, 24, p. 12Chemical Abstracts, 126, p. 245186Pendzig, P., Dieterich, W., Knoedler, D., Ntzan, A., Olender, R., (1996) Mater. Sci. Forum, 223, p. 61Vincent, C.A., (1987) Process in Solid State Chemistry, 17, p. 145Brett, M.A., Brett, A.M.O., (1996) Electroqumíca: Princípios, Métodos e Aplicaçōes, p. 91. , OxfordNew YorkBard, A.J., Faulkner, L.R., (1980) Electrochemical Methods, 316, p. 119. , WileyNew YorkKoryta, J., Kavan, L., (1993) Principles of Electrochemistry, p. 79. , WileyNew YorkKharkats, Y.I., Noskov, A.V., (1997) Electrochim. Acta, 42, p. 813Scrosati, B., (1993) Applications of Electroative Polymers, p. 32. , Chapman & HallLondonVorotyntsev, M.A., Daikin, L.I., Levi, M.D., (1994) J. Electroanal. Chem., 364, p. 37Vorotyntsev, M.A., Badiali, J.P., Vieil, E., (1996) Electrochim. Acta, 41, p. 1375Randies, J.E.B., (1947) Disc. Faraday Soc, 1, p. 11De Paoli, M.-A., Menescal, R.K., (1986) Quím. Nova, 9, p. 133Chiang, C.K., Fincher, C.R., Park, Y.W., Heeger, A.J., Shirakawa, H., Luis, E.J., Gau, S.C., McDiarmid, A.J., (1977) Phys. Rev. Lett., 33, p. 1098Skotheim, T.A., (1986) Handbook of Conducting Polymers, 1-2. , DekkerNew YorkNalwa, H.S., (1997) Handbook of Organic Conductive Molecules and Polymers, 4. , WileyEnglandGeniés, E.M., Boyle, A., Lapkowski, M., Tsintavis, C., (1990) Synth. Met., 36, p. 139Mattoso, L.H.C., (1996) Quim. Nova, 19, p. 388De Paoli, M.-A., Zoppi, R.A., (1993) Quím. Nova, 16, p. 560Pickup, G., Ren, X., (1993) J. Chem. Soc. Faraday Trans., 89, p. 321Deslouis, C., Musiani, M.M., Tribollet, B., (1997) Synth. Met., 84, p. 827Lipkowski, J., Ross, P.N., (1994) Electrochemistry of Novel Materials, p. 141. , VCHNew York cap.4Frant, M.S., (1997) J. Chem. Educ., 74, p. 159Gholomian, M., Contractor, A.Q., (1990) J. Elcctroanal. Chem., 289, p. 69Olivi, P., Nunes, V.P., (1997) Anais da 2oa- Renniāo Anual da SBQ, , Poços de Caldas EQ85Dixon, D.G., Varelas, C.G., (1995) Aiche Journal, 41, p. 805Kalcic, I., Zorc, B., (1997) Kem. Ind., 46, p. 171Chemical Abstracts, 127, p. 39565Kan, Z., Hui-Huang, W., (1997) Chem. Res. Chin. Univ., 13, p. 56Gao, Z., Chen, B., Zi, M., (1994) Analyst, 119, p. 459Kaiser, A.B., (1995) Synth. Met., 69, p. 197Nakao, H., (1997) Anal. Chem., 69, p. 1030Pickup, P.G., (1989) Faraday Discuss. Chem. Soc., 88, p. 165Levi, M.D., Pisarevskaya, E.Y., (1991) Synth. Met., 45, p. 309Lien, M., Katsuhiko, N., Smyrl, W., (1991) J. Electrochem. Soc., 138, p. 440Vorontyntsev, M.A., Vieil, E., Heinze, J., (1995) Russian J. Electrochem., 31, p. 1027Reynolds, J.R., Pyo, M., (1995) J. Phys. Chem., 99, p. 8249Buttry, D.A., Deakin, M.R., (1989) Anal. Chem., 61, p. 1147De Paoli, M.-A., Peres, R.C.D., (1992) Synth. Met., 48, p. 259Reynolds, J.R., Baker, C.K., Qiu, Y.-J., (1991) J. Phys. Chem., 93, p. 4446Buttry, D.A., Ostrom, G.S., (1995) J. Phys. Chem., 99, p. 15236Ohsaka, T., Oyama, N., (1995) Prog. Polym. Sci., 20, p. 761De Paoli, M.-A., (1994) J. Braz. Chem. Soc., 5, p. 191Matencio, T., De Paoli, M.-A., Peres, R.C.D., Torresi, R.M., Torresi, S.I.C., (1995) Synth. Met., 72, p. 59Vieil, E., Meerholz, K., Matencio, T., Heinze, J., (1994) J. Eleclroanal. Chem., 368, p. 183Bolt, A.W., (1992) Curr. Separations, 314, p. 61Kwak, J., Yang, H., (1997) J. Phys. Chem. B., 101, p. 774Deslouis, C., Musiani, M.M., Tribollet, B., Vorotyntsev, M.A., (1995) J. Electrochem. Soc., 142, p. 1902Mastragostino, M., Ferloni, P., Meneghello, L., (1996) Eledrochim. Acta, 41, p. 27Schindler, R.N., Barsoukov, E., Popkirov, G.S., (1995) Electrochim. Acta, 40, p. 1857Grzeszczuk, M., Zabinska-O, G., (1993) J. Electroanal. Chem., 559, p. 161Gabrielli, C., Haas, O., Takenouti, H., (1987) J. Appl. Electrochem, 17, p. 82Musiani, M.M., (1990) Electrochim. Acta, 35, p. 1665Horanyi, G., Inzelt, G., (1988) Electrochim. Acta, 33, p. 947Kazarinov, V.E., Andreev, V.N., Spytsin, M.A., Shlepakov, V., (1989) Electrochim. Acta, 55, p. 899Christensen, P.A., Hamnett, A., Hillman, A.R., (1988) J. Electroanal. Chem., 242, p. 47Higgins, S.J., Hamnett, A., (1991) Electrochim. Acta, 36, p. 2123Krishna, V., Ho, Y.-H., Basak, S., Rajeshwar, K., (1991) J. Am. Chem. Soc., 113, p. 3325Inganas, O., Pei, Q., (1993) J. Phys. Chem., 97, p. 6034Gandhi, M.R., Murray, P., Spinks, G.M., Wallace, G.G., (1995) Synth. Met., 73, p. 247Smela, E., Inganäs, O., Lundström, Y., (1995) Science, 268, p. 1731Otero, T.F., (1996) J. Phys. Org. Chem., 9, p. 381De Paoli, M.-A., Polo Da Fonseca, C.M.N., Sansiñena, J.M., Olazábal, V., Otero, T.F., (1997) Chem. Comm., p. 2217Volfkovich, Y.W., Bagotzky, V.S., Zolotova, T.K., Pisarevskaya, E.Y., (1996) Electrochim. Acta, 41, p. 1905De Levie, R., (1967) Advances in Electrochemistry and Electrochemical Enggineering, 6. , InterscienceNew YorkMount, A.R., Albery, W.J., (1991) J. Elcctroanal. Chem., 505, p. 3Matencio, T., Pernault, J.M., Electrochim. Acta, , submetidoPernaut, J.M., Soares, L.C., Belchior, J., (1997) J. Braz. Chem. Soc., 8, p. 175Matencio, T., Pernault, J.M., (1997) Anais da 20a- Reunião Annal da SBQ, , Poços de Caldas EQ80Servagent, S., Vieil, E., (1990) J. Electroanal. Chem., 280, p. 227Gabrielli, C., Haas, O., Takenouti, H., Tsukada, A., (1991) J. Electroanal. Chem., 502, p. 59Armstrong, R.D., Hamnett, A., Christensen, P., Read, D.C., Johnson, B.W., (1994) J. Electroanal. Chem., 364, p. 103Gazotti, W.A., Casalbore-Miceli, G., Geri, A., De Paoli, M.-A., (1998) Adv. Mater., 10, p. 60Neves, S., Polo Da Fonseca, C.M.N., De Paoli, M.-A., (1997) Synth. Met., 89, p. 167Boukamp, B.A., (1989) Equivalent Circuit Users Manual, , University of TwenteThe NetherlandsBull, R.A., Fan, F.R.F., Bard, A.J., (1982) J. Electrochem. Soc., 729, p. 1009Hall, E.A.H., Skinner, N.G., (1994) Synth. Met., 63, p. 133De Paoli, M.-A., Gazotti Jr., W.A., resultados não publicadosGazotti Jr., W.A., De Paoli, M.-A., (1996) Synth. Met., 80, p. 263Laska, J., Pron, A., Zagorska, M., Lapkowski, M., Lefrant, S., (1995) Synth. Met., 69, p. 113Pron, A., Laska, J., Österholm, J.-E., Smith, P., (1995) Polymer., 34, p. 4235Macdonald, J.R., (1987) Impedance Spectroscopy Emphasizing Solid Materials and Systems, , WileyNew YorkKazarinov, V.E., Levi, M.D., Vorotyntsev, A.M., (1989) J. Electroanal. Chem., 277, p. 193Deslouis, C., Moustafid, T.E., Musiani, M.M., Tribollet, B., (1996) Electrochim. Acta, 41, p. 1343Pickup, P.G., (1990) J. Client. Soc. Faraday Trans., 86, p. 3631Mulder, W., (1992) J. Elcctroanal. Chem., 326, p. 231Mount, A.R., Elliott, C.M., Albery, W.J., (1990) J. Elcctroanal. Chem., 288, p. 15Boukamp, B.A., (1995) Programa "EQUlVCRT"Versāo 4.51Gazotti Jr., W.A., Matencio, T., De Paoli, M.-A., (1998) Electrochim. Acta, 43, p. 457Glarum, S.H., Marshall, J.H., (1987) J. Electrochem. Soc., 134, p. 142Rubistein, I., Sabatini, E., Rishpon, J., (1987) J. Electrochem. Soc., 134, p. 3078Jow, T.R., Shacklette, L.W., (1988) J. Electrochem. Soc., 135, p. 541Tanguy, J., Mermilliod, N., Hoclet, M., (1987) J. Electrochem. Soc., 134, p. 795Vincent, C.A., McCallun, J.R., (1984) Applications of Piezoelectric Crystal Microbalance, , ElsevierNew YorkBruckenstein, S., Shay, M., (1985) Electrochim. Acta, 39, p. 1295Miwa, A., Izuka, Y., Hosoda, K., Wakamatsy, K., Oya, M., (1996) Byoin Yakngaku, 22, p. 89Chemical Abstracts, 124, p. 253294Sudoh, M., Aonuma, T., Tsubaki, Y., Ohashi, K., Kimura, M., (1996) Maku, 21, p. 74Chemical Abstracts, 124, p. 197522Omowunmi, A., (1996) ACS Symp. Ser., 646, p. 37Lee, K., Raghavan, S., Mathew, V., (1997) Proc. Electrochem. Soc., 96, p. 126Sauerbrey, G., (1959) Z. Phys., 755, p. 206Kanazawa, J., Gordon, G., (1985) Anal. Chem., 57, p. 1770Muramatsu, H., Tamiya, E., Karube, L., (1988) Anal. Chem., 60, p. 2142Muramatsu, H., Ye, S., Suda, M., Sakuhara, T., Ataka, T., (1992) J. Electroanal. Chem., 522, p. 311Buttry, D.A., Ward, M.D., (1992) Chem. Rev., 92, p. 1355Hillman, A.R., (1997) Sol. State Ion., 94, p. 151Hillman, A.R., Bandey, H.L., Gonsalves, M., Glidle, A., Bruckenstein, S., (1996) J. Eleclroanal. Chem., 410, p. 219Martin, S.J., Granstaff, V.E., Frye, G.C., (1991) Anal. Chem., 63, p. 2272Martin, S.J., Granstaff, V.E., (1994) J. Appl. Phys., 75, p. 1319Polo Da Fonseca, C.M.N., (1997), Tese de DoutoradoUnicampSoares, D.M., Tenan, M.A., Wasle, S., (1997) Electrochim. Acta, 44, p. 263Velinov, T., Arsova, D., Vateva, E., (1997) Phys. Rev. B: Condens. Matter, 55, p. 11014Xing-Zheng, W., Morikawa, T., Katsumi, U., Toshiyuki, H., (1997) J. Phys. Chem. B., 707, p. 1520Mathias, M.F., (1996) J. Electroanal. Chem., 407, p. 115Koziel, K., Lapkowski, M., Vieil, E., (1997) Synth. Met., 84, p. 9

    Photoelectrochemical Properties Of Poly(3,4-ethylenedioxythiophene)

    No full text
    The photoelectrochemical properties of poly(3,4-ethylene dioxythiophene)/ poly(styrene sulfonate) in contact with an electrolytic solution containing a redox couple were studied using the theories for the semiconductor-electrolyte interface. When this polymer-electrolyte interface is illuminated with hv > Eg (gap energy) it exhibits cathodic photocurrent typical of p-type semiconductors, and the flat band potential, density of majority carriers, and the depletion layer thickness can be determined. To complete the band energy diagram of this polymer-electrolyte interface we obtained the band gap energy through the absorption and photocurrent spectra. The relatively low band gap energy (1.5 eV) and the photoeffects observed at the interface suggest its use as the absorbing material in photoelectrochemical cells. © 2000 American Chemical Society.1042661246127Koryta, J., Dvorak, J., Kavan, L., (1993) Principles of Electrochemistry, 2nd Ed., , John Wiley: New YorkBard, A.J., Faulkner, L.R., (1980) Electrochemical Methods - Fundamentals and Applications, , John Wiley: New YorkBantikassegn, W., Inganäs, O., (1995) Thin Solid Films, 293, p. 138Camaioni, N., Casalbore-Miceli, G., Geri, A., Zotti, G., (1998) J. Phys. D: Appl. Phys., 31, p. 1245Gerischer, H., (1990) Electrochim. Acta, 35, p. 1677Miquelino, F.L.C., De Paoli, M.-A., Geniès, E.M., (1994) Synth. Met., 68, p. 91Martini, M., De Paoli, M.-A., (2000) Sol. Energy Mater. Sol. Cells, 60, p. 73Das Neves, S., De Paoli, M.-A., (1998) Synth. Met., 96, p. 48Maia, D.J., Das Neves, S., Alves, O.L., De Paoli, M.-A., (1999) Electrochim. Acta, 44, p. 1945Gazotti, W.A., Faez, R., De Paoli, M.-A., (1996) J. Electroanal. Chem., 415, p. 107Micaroni, L., De Paoli, M.-A., (1996) Sol. Energy Mater. Sol. Cells, 46, p. 79Pei, Q., Zucarello, G., Ahlskog, M., Inganäs, O., (1994) Polymer, 35, p. 1347Dietrich, M., Heinze, J., Heywang, G., Jonas, F., (1994) J. Electroanal. Chem., 369, p. 87De Paoli, M.-A., Casalbore-Miceli, G., Gazotti, W.A., Girotto, E.M., (1999) Electrochim. Acta, 44, p. 2983Micaroni, L., Polo Da Fonseca, C.N., Decker, F., De Paoli, M.-A., (2000) Sol. Energy Mater. Sol. Cells, 60, p. 127Abrantes, L.M., Castillo, L.M., Fleischmann, M., Hill, I.R., Peter, L.M., Mengoli, G., Zotti, G., (1984) J. Electroanal. Chem., 177, p. 129Li, Z., Dong, S., (1992) Electrochim. Acta, 37, p. 1003Glenis, S., Tourillon, G., Garnier, F., (1986) Thin Solid Films, 139, p. 221Butler, M.A., (1977) J. Appl. Phys., 48, p. 1914Finklea, H., (1988) Semiconductors Electrodes, , Elsevier: New YorkSunde, S., Hagen, G., Odegard, R., (1993) J. Electroanal. Chem., 345, p. 59Glenis, S., Tourillon, G., Garnier, F., (1984) Thin Solid Films, 122, p. 9Wilson, R.H., (1977) J. Appl. Phys., 48, p. 4292Skotheim, T., (1981) Appl. Phys. Lett., 38, p. 9Gerischer, H., (1981) Photovoltaic and Photoelectrochemical Solar Energy Conversion, , Cordon, S., Gomes, W. P., Dekeyser, W., Eds.Plenum Press: New YorkWöhrle, D., Meissner, D., (1991) Adv. Mater., 3, p. 12

    Electrochemical And Mechanical Properties Of Hydrogels Based On Conductive Poly(3,4-ethylene Dioxythiophene)/poly(styrenesulfonate) And Paam

    No full text
    This paper reports on the effects of poly(3,4-ethylene dioxythiophene)/ poly(styrenesulfonate) (PEDOT/PSS) entangled in the polyacrylamide (PAAm) network by the formation of a semi-IPN on hydrogel performance. Hydrogel properties were evaluated by scanning electron microscopy, water uptake, compressive load tests, ionic conductance and capacitance measurements. It has been found that the introduction of PEDOT/PSS leads to changes in the hydrogel morphology as compared to that of PAAm hydrogels. In addition, PAAm networks with good mechanical properties have been obtained. The presence of PEDOT/PSS increased the ionic conductance of swollen semi-IPN hydrogels substantially. Electrochemical experiments demonstrated that PAAm-PEDOT/PSS hydrogel is electrochemically stable and presents reversible responses to electrochemical stimuli. © 2005 Elsevier Ltd. All rights reserved.252158165Bell, C.L., Peppas, N.A., Biomedical membranes from hydrogels and interpolymer complexes (1995) Biopolymers II Advances in Polymer Science, 22, pp. 125-175Hoffman, A.S., Hydrogels for biomedical applications (2002) Advanced Drug Delivery Reviews, 54, pp. 3-12Buchholz, F.L., Graham, A.T., (1997) Modern Superabsorbent Polymer Technology, , Wiley-VCH New YorkWieczorek, W., Fldrjanczyk, Z., Stevens, J.R., Proton conducting polymer gels based on a polyacrylamide matrix (1995) Electrochimica Acta, 40, pp. 2327-2330Siddhanta, S.K., Gangopadhyay, R., Conducting polymer gel: Formation of a novel semi-IPN from polyaniline and crosslinked poly (2-acrylamido-2-methyl propanesulphonicacid) (2005) Polymer, 46, pp. 2993-3000Micic, M., Zheng, Y., Moy, V., Zhang, X.-H., Andreopoulos, F.M., Leblanc, R.M., Comparative studies of surface topography and mechanical properties of a new, photo-switchable PEG-based hydrogel (2003) Colloids and Surfaces B: Biointerfaces, 27, pp. 147-158Badot, J.C., Baffier, N., Ionic-conductivity and dielectric-properties of vanadium pentoxide xerogels (1992) Journal of Materials Chemistry, 11, pp. 1167-1174Zhang, W.B., Lu, W.W., Li, X., Zhu, D., De Yao, K., Wang, Q., A rapid temperature responsive sol-gel reversible poly(N- isopropylacrylamide)-g-methylcellulose copolymer hydrogel (2004) Biomaterials, 25, pp. 3005-3012Herber, S., Olthuis, W., Bergveld, P., A swelling hydrogel-based PCO2 sensor (2003) Sensors and Actuators B - Chemical, 91, pp. 378-382Hinkley, J.A., Morgret, L.D., Gehrke, S.H., Tensile properties of two responsive hydrogels (2004) Polymer, 45, pp. 8837-8843Muzzarelli, C., Tosi, G., Francescangeli, O., Muzzarelli, R.A.A., Alkaline chitosan solutions (2003) Carbohydrate Research, 338, pp. 2247-2255Elliott, J.E., MacDonald, M., Nie, J., Bowman, C.N., Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure (2004) Polymer, 45, pp. 1503-1510Kim, S.J., Kim, H.I.I., Park, S.J., Kim, S.I., Shape change characteristics of polymer hydrogel based on polyacrylic acid/poly(vinyl sulfonic acid) in electric fields (2004) Sensors and Actuators A - Physica, 115, pp. 146-150Kostko, A.F., Chen, T., Payne, G.F., Anisimov, M.A., Dynamic light-scattering monitoring of a transient biopolymer gel (2003) Physica A - Statistical Mechanics and Its Applications, 323, pp. 124-138Akihiko, K., Hideki, F., Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization (1997) Journal of Fermentation and Bioengineering, 84, pp. 337-341Zukowska, G., Williams, J., Stevens, J.R., Jeffrey, K.R., Lewera, A., Kulesza, P.J., The application of acrylic monomers with acidic groups to the synthesis of proton-conducting polymer gels (2004) Solid State Ionics, 167, pp. 123-130Kang, C., Shin, H., Zhang, Y., Heller, A., Deactivation of bilirubin oxidase by a product of the reaction of urate and O2 (2004) Bioelectrochemistry, 65, pp. 83-88Zhang, X.Z., Wu, D.Q., Chu, C.C., Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels (2004) Biomaterials, 25, pp. 3793-3805Richter, A., Howitz, S., Kuckling, D., Arndt, K.F., Influence of volume phase transition phenomena on the behavior of hydrogel-based valves (2004) Sensors and Actuators B - Chemical, 99, pp. 451-458Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J., Boland, T., Inkjet printing for high-throughput cell patterning (2004) Biomaterials, 25, pp. 3707-3715Muniz, E.C., Geuskens, G., Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide) (2001) Macromolecules, 34, pp. 4480-4484Ferruzzi, G.G., Pan, N., Casey, W.H., Mechanical properties of gellan and polyacrylamide gels with implications for soil stabilization (2000) Soil Science, 165, pp. 778-792Gutowska, A., Bae, Y.H., Jacobs, H., Feijen, J., Kim, S.W., Thermosensitive interpenetrating polymer networks - Synthesis, characterization, and macromolecular release (1994) Macromolecules, 27, pp. 4167-4175Huglin, M.B., Rehab, M.M.A.M., Zakaria, M.B., Thermodynamic interactions in copolymeric hydrogels (1986) Macromolecules, 19, pp. 2986-2991Girotto, E.M., Santos, I.A., Medidas de resistividade elétrica DC em sólidos: Como efetuá-las corretamente (2002) Química Nova, 25, pp. 639-642Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H., Hydrogels in pharmaceutical formulations (2000) European Journal of Pharmaceutics and Biopharmaceutics, 50, pp. 27-46Callister, W.D., (1999) Materials Science and Engineering: An Introduction, , fifth ed. Wiley New Yor

    Enhancement Of The Photoelectrochemical Response Of Poly(terthiophenes) By Cds(zns) Core-shell Nanoparticles

    No full text
    We have investigated the photoelectrochemical properties of hybrid films of polythiophenes poly(4,4″dimethoxy-3′-methyl-2,2′:5′,2″ terthiophene) (PDM), poly(4,4″dipentoxy-3′-methyl-2,2′:5′,2″ terthiophene) (PDP), and cadmium sulfide/zinc sulfide (CdS(ZnS)) core-shell nanoparticles. Although CdS(ZnS) nanoparticles present enhanced exciton trapping, light harvesting by hybrid films was enhanced when compared to those of pure PDM and PDP films. This enhancement is explained in terms of electron and hole transfer mechanisms at different excitation wavelengths. The more efficient light harvesting of PDM/CdS(ZnS) when compared to that of PDP/CdS(ZnS) was attributed to its broader absorption spectrum and more efficient electron hopping. © 2009 Elsevier B.V. All rights reserved.5171855235529Nalwa, H.S., (1998) Handbook of the advanced electronic and photonic materials and devices, , Academic press, LondonMurray, C.B., Norris, D.J., Bawendi, M.G., (1993) J. Am. Chem. Soc., 115, p. 8706Casalbore-Miceli, G., Camaioni, N., Gallazi, M.C., Albertin, L., Fichera, A.M., Geri, A., Girotto, E.M., (2001) Synth. Met., 125, p. 307Tracey, M.C., Gordon, K.C., Officer, D.L., Hall, S.B., Collis, G.E., Burrell, A.K., (2003) J. Phys. Chem., A, 107, p. 11505Barta, P., Osikowicz, W., Salaneck, W.R., Zgorska, M., Niziol, S., (1999) Synth. Met., 101, p. 295Greenham, N.C., Peng, X., Alivisatos, A.P., (1996) Phys. Rev., B, 54, p. 17628Sheeney-Haj-Ichia, L., Basnar, B., Willner, I., (2005) Angew. Chem., Int., 44, p. 78Protiere, M., Reiss, P., (2006) Nanoscale Res. Lett., 1, p. 62Barazzouk, S., Kamat, P.V., Hotchandani, S., (2005) J. Phys. Chem., B, 109, p. 716Sharma, S.N., Pillai, Z.S., Kamat, P.V., (2003) J. Phys. Chem., B, 107, p. 10088Ipe, B.I., Thomas, K.G., Barazzouk, S., Hotchandani, S., Kamat, P.V., (2002) J. Phys. Chem., B, 106, p. 18Spanhel, L., Haase, M., Weller, H., Henglein, A., (1987) J. Am. Chem. Soc., 109, p. 5649Hirai, T., Okubo, H., Komasawa, I., (1999) J. Phys. Chem., B, 103, p. 4228Chae, W.S., Ko, J.H., Hwang, I.W., Kim, Y.R., (2002) Chem. Phys. Lett., 365, p. 49Orii, T., Kaito, S., Matsuishi, K., Onari, S., Arai, T., (2002) J. Phys.: Condens. Matter, 14, p. 9743Protiere, M., Reiss, P., (2006) Nanoscale Res. Lett., 1, p. 62Uda, H., Yonezawa, H., Ohtsubo, Y., Kosoka, M., Sonomura, H., (2003) Sol. Energy Mater. Sol. Cells, 75, p. 219Youn, H.C., Baral, S., Fendler, J.H., (1988) J. Phys. Chem., 92, p. 6320Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L.E., (1990) J. Am. Chem. Soc., 112, p. 1327Danek, M., Jensen, K.F., Murray, C.B., Bawendi, M.G., (1996) Chem. Mater., 8, p. 173Littau, K.A., Szajowski, P.J., Muller, A.J., Kortan, A.R., Brus, L.E., (1993) J. Phys. Chem., 97, p. 1224Wilson, W.L., Szajowski, P.J., Brus, L.E., (1993) Science, 262, p. 1242Hines, M.A., Guyot-Sionnest, P., (1996) J. Phys. Chem., 100, p. 468Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., (1997) J. Phys. Chem. B, 101, p. 9463Murray, C.B., Kagan, C.R., Bawendi, M.G., (1995) Science, 270, p. 1335Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J., (1996) Nature, 382, p. 607Santos, M.J.L., Girotto, E.M., (2009) J. Braz. Chem. Soc., 20, p. 229Tsekouras, G., Too, C.O., Wallace, G.G., (2005) Electrochim. Acta, 50, p. 3224Trindade, T., OBrien, P., Zhang, X.M., (1997) Chem. Mater., 9, p. 523Malik, M.A., OBrien, P., Revaprasadu, N., (2002) Chem. Mater., 14, p. 2004Steckel, J.S., Zimmer, J.P., Coe-Sullivan, S., Stott, N.E., Bulovic, V., Bawendi, M.G., (2004) Angew. Chem., Int., 43, p. 2154Wang, L.-W., Zunger, A., (1996) Phys. Rev., B, 53, p. 9579Stirling, A., Pasquarello, A., Charlier, J.-C., Car, R., (2000) Phys. Rev. Lett., 85, p. 2773Fahrenbruch, A.L., Bube, R.H., (1983) Fundamentals of solar cells, , Academic PressEran, G., Fernando, P., Itamar, W., (2004) J. Phys. Chem., B, 108, p. 5875Turner, J.A., (1983) J. Chem. Educ., 60, p. 327Finklea, H., (1988) Semiconductors Electrodes, , Elsevier, New YorkNogueira, A.F., Montanari, I., Nelson, J., Brabec, C., Sariciftci, N.S., Durrant, J.R., (2003) J. Phys. Chem., B, 107, p. 1567Glenis, S., Tourillon, G., Garnier, F., (1984) Thin Solid Films, 122, p. 9Nozik, A.J., (1978) Ann. Rev. Phys. Chem., 29, p. 189Ginger, D.S., Greenham, N.C., (1999) Phys. Rev., B, 59, p. 10622Sariciftci, N.S., Heeger, A.J., (1997) Handbook of conductive molecules and polymers, , Nalwa H.S. (Ed), John Wiley and Sons, New YorkCheng, J., Wang, S., Li, X., Yan, Y., Yang, S., Yang, C.L., Wang, J.N., Ge, W.K., (2001) Chem. Phys. Lett., 333, p. 375Fahrenbruch, A.L., Bube, R.H., (1983) Fundamentals of Solar Cells, , Academic Pres

    Photoelectrical Properties Of The System Ito/poly(4,4″-dipenthoxy-3′-dodecyl-2,2′:5′, 2″-terthiophene)/al: Effect Of Electrosynthesis Conditions

    No full text
    The photoelectrical properties of the system ITO/poly(4,4″-dipenthoxy-3′-dodecyl-2,2′:5′, 2″-terthiophene)/aluminium are strongly dependent on the electrochemical preparation parameters of the polymer. In particular the polymerization temperature has a significant influence on the photoelectronic characteristics of polymer. The best properties were attained with polymers prepared at higher temperatures (32-40 °C).313335339Menon, R., Charge transport in conducting polymers (1997) Handbook of Conductive Molecules and Polymers, 4, p. 47. , H.S. Nalwa (Ed.), J. Wiley & Sons, ChichesterKohlman, R.S., Epstein, A.J., Insulator-metal transition in inhomogeneous metallic state in conducting polymers (1998) Handbook of Conducting Polymers, p. 85. , T.A. Skotheim, R.L. Elsenbaumer and J.R. Reynolds (Eds), Marcel Dekker, New YorkRoncali, J., (1992) Chem. Rev., 92, p. 711McCullough, R.D., (1998) Adv. Mater., 10, p. 93Leclerc, M., Diaz, F.M., Wegner, G., (1989) Makromol. Chem., 190, p. 3105Glenis, S., Horowitz, G., Tourillon, G., Garnier, F., (1984) Thin Solid Films, 111, p. 93Camaioni, N., Casalbore-Miceli, G., Beggiato, G., Cristani, M., Summonte, C., (2000) Thin Solid Films, 366, p. 211Rodriguez, J., Grande, H.-J., Otero, T.F., Polypyrroles: From basic research to technological applications , 2, p. 415. , H.S. Nalwa (Ed), see [1], and references thereinTanaka, K., Shichiri, T., Yamabe, T., (1986) Synth. Met., 16, p. 207Gholomian, M., Contractor, A.Q., (1988) J. Electroanal. Chem., 252, p. 291Zotti, G., Electrochemical synthesis of polyheterocycles and their application , 2, p. 137. , H.S. Nalwa (Ed.), see [1]Ogasawara, M., Funahashi, K., Iwara, K., (1985) Mol. Cryst. Liq. Cryst., 118, p. 159Ogasawara, M., Funahashi, K., Demura, K., Hagiwara, T., Iwara, K., (1986) Synth. Met., 14, p. 61Takakubo, M., (1986) Synth. Met., 16, p. 167Mitchell, G.R., Geri, A., (1987) J. Phys. D Appl. Phys., 20, p. 1346Roncali, J., Yassar, A., Garnier, F., (1988) J. Chem. Soc. Chem. Commun., p. 581Yassar, A., Roncali, J., Garnier, F., (1989) Macromolecules, 22, p. 804Casalbore-Miceli, G., Camaioni, N., Geri, A., Berlin, A., Campesato, R., (1999) Electrochim. Acta, 44, p. 4781Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J., (1995) Science, 270, p. 1789Zotti, G., Marin, R.A., Gallazzi, M.C., (1997) Chem. Mater., 9, p. 2945Hagler, T.W., Pakbaz, K., Voss, K.F., Heeger, A., (1991) J. Phys. Rev. B, 44, p. 8652Andersson, M.R., Selse, D., Berggren, M., Jarvinen, H., Hjertberg, T., Inganas, O., Wennerstrom, O., Osterholm, J.E., (1994) Macromolecules, 27, p. 6503Rughooputh, S.D.D.V., Hotta, S., Heeger, A.J., Wudl, F., (1987) J. Polym. Sci. B Polym. Phys., 25, p. 1071Mårdalen, J., Samuelsen, E.J., Gautun, O.R., Carlsen, H.J., (1993) Makromol. Chem., 194, p. 2483Mårdalen, J., Fell, A.H., Samuelsen, E.J., Bakken, E., Carlsen, H.J., Andersson, M.R., (1995) Macromol. Chem. Phys., 196, p. 553Glenis, S., Horowitz, G., Tourillon, G., Garnier, F., (1984) Thin Solid Films, 111, p. 93Glenis, S., Tourillon, G., Garnier, F., (1986) Thin Solid Films, 130, p. 221Bube, R.H., (1992) Photoelectronic Properties of Semiconductors, , Cambridge University Press, CambridgeYu, G., Pakbaz, K., Heeger, A.J., (1994) Appl. Phys. Lett., 64, p. 3422Yu, G., Heeger, A.J., (1995) J. Appl. Phys., 78, p. 4510Yu, G., Wang, J., McElvain, J., Heeger, A.J., (1998) Adv. Mater., 10, p. 143

    Effect of the synthesis temperature and the length of alkyl substituents on photoelectrical properties of polyterthiophenes

    No full text

    Electrochemical And Electrochromic Properties Of Poly(4,4″ Dimethoxy 3′-methyl 2,2′:5′,2″ Terthiophene)

    No full text
    This work describes the electrochemical, spectroelectrochemical and electrochromic properties of poly(4,4″ dimethoxy 3′-methyl 2,2′:5′,2″ terthiophene) thin films. The effect of temperature on the electropolymerization was studied by cyclic voltammetry measured in situ. The temperatures used were -10, 0, 10, 20, and 40°C. Results indicate that the electropolymerization temperature directly affect the degree of chain organization. The optical response time for bleaching was 0.8 s and for coloring 0.3 s (for films synthesized at 40°C, 60 nm thick). After 1400 electrochromic cycles, the chromatic contrast at 570 nm changes from 31 to 14%. The coloration efficiency was enhanced as a function of redox cycling. This was probably caused by a decrease in the injected charge necessary for the color change, suggesting that the electroactive losses occurring during the cycles are related to sites not responsible for electrochromic contrast. ©2005 Sociedade Brasileira de Química.164733738Roncali, J., (1992) Chem. Rev., 92, p. 711Tourillon, G., Garnier, F., Lemaire, M., (1982) J. Electroanal Chem., 135, p. 173Pomerantz, M., (1998) Handbook of Conducting Polymers, , Skotheim, T. A.Elsenbaumer, R. L.Reynolds, J. R., eds.Marcel Dekker: New York, ch. 11Roncali, J., (1997) Chem. Rev., 97, p. 173Andersson, M.R., Thomas, O., Mammo, W., Svensson, M., Theander, M., Inganäs, O., (1999) J. Mater. Chem., 9, p. 1993Tsivgoulis, G.M., Lehn, J.M., (1997) Adv. Mater., 9, p. 39Andersson, M.R., Berggren, M., Gustafsson, G., Hjertberg, T., Inganäs, O., Wennerström, O., (1995) Synth. Met., 71, p. 2183Granström, M., (1997) Polym. Adv. Technol., 8, p. 424Granlund, T., Theander, M., Berggren, M., Andresson, M., Ruzeckas, A., Sundström, V., Björk, G., Inganäs, O., (1988) Chem. Phys. Lett., 288, p. 879Mazeca, M., Cittibabu, K.G., Kim, J., Kumar, J., Jain, A., Kim, W., Tripathy, S.K., (1998) Synth. Met., 98, p. 45Tsumura, A., Ando, T., Koezuka, H., (1986) Appl. Phys. Lett., 49, p. 1210Bao, Z., Lovinger, A.J., (1999) Chem. Mater., 11, p. 2607De Melo, C.P., Dos Santos, C.G., Silva, A.M.S., Dos Santos, F.L., De Souza, J.E.G., (2002) Mol. Cryst. Liq. Cryst., 374, p. 543Gallazzi, M.C., Tassoni, L., Bertarelli, C., Pioggia, G., Di Francesco, F., Montoneri, E., (2003) Sens. Actuators B, 88, p. 178Zotti, G., Gallazzi, M.C., Zerbi, G., Meille, S.V., (1995) Synth. Met., 73, p. 217Yamamoto, T., Sanechika, K., Yamamoto, A.J., (1980) J. Polym. Sci. Polym. Lett., 18, p. 9Tourillon, G., (1986) Handbook of Conducting Polymers, p. 293. , Skotheim T. A.Elsenbaumer, R. L.Reynolds, J. R., eds.Marcel Dekker: New YorkCasalbore-Miceli, G., Camaioni, N., Gallazzi, M.C., Albertin, L., Fichera, A.M., Geri, A., Girotto, E.M., (2002) Synth. Met., 125, p. 307Ribeiro, A.S., Gazotti, W.A., Santos Filho, P.F., De Paoli, M.-A., (2004) Synth. Met., 145, p. 43Ives, D.J.G., Janz, G.J., (1961) Reference Electrodes. Theory and Practice, p. 189. , Academic Press: New YorkBates, R.G., Bower, V.E., (1954) J. Research Natl. Bur. Standards, 53, p. 282Doblhofer, K., Rajeshwar, K., (1998) Handbook of Conducting Polymers, , Skotheim, T. A.Elsenbaumer, R. L.Reynolds, J. R., eds.Marcel Dekker: New York, ch. 25Zotti, G., (1997) Handbook of Organic Conductive Molecules and Polymers, 2, p. 137. , Nalwa, H. S., ed.Wiley: New YorkRoncali, J., Yassar, A., Garnier, F., (1998) J. Chem. Soc., Chem. Commun., p. 581Glenis, S., Horowitz, G., Tourillon, G., Garnier, F., (1984) Thin Solid Films, 111, p. 93Yassar, A., Roncali, J., Garnier, F., (1989) Macromolecules, 22, p. 804Camaioni, N., Casalbore-Miceli, G., Beggiato, G., Cristani, M., Summonte, C., (2000) Thin Solid Films, 366, p. 211Girotto, E.M., Camaioni, N., Casalbore-Miceli, G., De Paoli, M.-A., Fichera, A.M., Gallazzi, M.C., (2001) J. Appl. Electrochem., 31, p. 335Casalbore-Miceli, G., Camaioni, N., Fattori, V., Fichera, A.M., Gallazzi, M.C., Geri, A., Girotto, E.M., Giro, G., (2001) Synth. Met., 121, p. 1575Girotto, E.M., Casalbore-Miceli, G., Camaioni, N., De Paoli, M.-A., Fichera, A.M., Belobrzeckaja, L., Gallazzi, M.C., (2001) J. Mater. Chem., 11, p. 1072Rughooputh, S.D.D.V., Nowak, M., Hotta, S., Heeger, A.J., Wudl, F., (1987) Macromolecules, 20, p. 212De Paoli, M.-A., Casalbore-Miceli, G., Girotto, E.M., Gazotti, W.A., (1999) Electrochim, Acta, 44, p. 2983Hotta, S., (1997) Handbook of Organic Conductive Molecules and Polymers, 2, p. 309. , Nalwa, H. S., ed.Wiley: New YorkGazotti, W.A., De Paoli, M.-A., Casalbore-Miceli, G., Geri, A., Zotti, G., (1999) J. Appl. Electrochem., 29, p. 753Monk, P.M.S., Mortimer, R.J., Rosseinsky, D.R., (1995) Electrochromism: Fundamentals and Applications, , VCH: WeinheimGazotti, W.A., Nogueira, A.F., Girotto, E.M., Micaroni, L., Martini, M., Neves, S., De Paoli, M.-A., (2001) Handbook of Advanced Electronic and Photonic Materials and Devices, 10. , Nalwa, H. S., ed.Academic Press: San Diego, ch. 2Abraham, K.M., (1993) Applications of Electroactive Polymers, , Scrosati, B., ed.,. Chapman & Hall: London, ch. 3;Scrosati, B., Applications of Electroactive Polymers, , ch. 7Mastragostino, M., Applications of Electroactive Polymers, , ch.

    Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study

    No full text
    Background: Pembrolizumab is active in head and neck squamous cell carcinoma (HNSCC), with programmed cell death ligand 1 (PD-L1) expression associated with improved response. Methods: KEYNOTE-048 was a randomised, phase 3 study of participants with untreated locally incurable recurrent or metastatic HNSCC done at 200 sites in 37 countries. Participants were stratified by PD-L1 expression, p16 status, and performance status and randomly allocated (1:1:1) to pembrolizumab alone, pembrolizumab plus a platinum and 5-fluorouracil (pembrolizumab with chemotherapy), or cetuximab plus a platinum and 5-fluorouracil (cetuximab with chemotherapy). Investigators and participants were aware of treatment assignment. Investigators, participants, and representatives of the sponsor were masked to the PD-L1 combined positive score (CPS) results; PD-L1 positivity was not required for study entry. The primary endpoints were overall survival (time from randomisation to death from any cause) and progression-free survival (time from randomisation to radiographically confirmed disease progression or death from any cause, whichever came first) in the intention-to-treat population (all participants randomly allocated to a treatment group). There were 14 primary hypotheses: superiority of pembrolizumab alone and of pembrolizumab with chemotherapy versus cetuximab with chemotherapy for overall survival and progression-free survival in the PD-L1 CPS of 20 or more, CPS of 1 or more, and total populations and non-inferiority (non-inferiority margin: 1·2) of pembrolizumab alone and pembrolizumab with chemotherapy versus cetuximab with chemotherapy for overall survival in the total population. The definitive findings for each hypothesis were obtained when statistical testing was completed for that hypothesis; this occurred at the second interim analysis for 11 hypotheses and at final analysis for three hypotheses. Safety was assessed in the as-treated population (all participants who received at least one dose of allocated treatment). This study is registered at ClinicalTrials.gov, number NCT02358031. Findings: Between April 20, 2015, and Jan 17, 2017, 882 participants were allocated to receive pembrolizumab alone (n=301), pembrolizumab with chemotherapy (n=281), or cetuximab with chemotherapy (n=300); of these, 754 (85%) had CPS of 1 or more and 381 (43%) had CPS of 20 or more. At the second interim analysis, pembrolizumab alone improved overall survival versus cetuximab with chemotherapy in the CPS of 20 or more population (median 14·9 months vs 10·7 months, hazard ratio [HR] 0·61 [95% CI 0·45–0·83], p=0·0007) and CPS of 1 or more population (12·3 vs 10·3, 0·78 [0·64–0·96], p=0·0086) and was non-inferior in the total population (11·6 vs 10·7, 0·85 [0·71–1·03]). Pembrolizumab with chemotherapy improved overall survival versus cetuximab with chemotherapy in the total population (13·0 months vs 10·7 months, HR 0·77 [95% CI 0·63–0·93], p=0·0034) at the second interim analysis and in the CPS of 20 or more population (14·7 vs 11·0, 0·60 [0·45–0·82], p=0·0004) and CPS of 1 or more population (13·6 vs 10·4, 0·65 [0·53–0·80], p<0·0001) at final analysis. Neither pembrolizumab alone nor pembrolizumab with chemotherapy improved progression-free survival at the second interim analysis. At final analysis, grade 3 or worse all-cause adverse events occurred in 164 (55%) of 300 treated participants in the pembrolizumab alone group, 235 (85%) of 276 in the pembrolizumab with chemotherapy group, and 239 (83%) of 287 in the cetuximab with chemotherapy group. Adverse events led to death in 25 (8%) participants in the pembrolizumab alone group, 32 (12%) in the pembrolizumab with chemotherapy group, and 28 (10%) in the cetuximab with chemotherapy group. Interpretation: Based on the observed efficacy and safety, pembrolizumab plus platinum and 5-fluorouracil is an appropriate first-line treatment for recurrent or metastatic HNSCC and pembrolizumab monotherapy is an appropriate first-line treatment for PD-L1-positive recurrent or metastatic HNSCC. Funding: Merck Sharp & Dohme. © 2019 Elsevier Lt
    corecore