6 research outputs found

    Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat

    Get PDF
    Tropical peatlands are a significant carbon store and source of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Plants can contribute to these gas emissions through the release of root exudates, including sugars and organic acids amongst other biomolecules, but the roles of concentration and composition of exudates in regulating emissions remains poorly understood. We conducted a laboratory incubation to assess how the type and concentration of root exudate analogues regulate CO2 and CH4 production from tropical peats under anoxic conditions. For CO2 production, substrate concentration was the more important driver, with increased CO2 fluxes following higher addition rates of four out of the six exudate analogues. In contrast, exudate type was the more important driver of CH4 production, with acetate addition associated with the greatest production, and inverse correlations between exudate concentration and CH4 emission for the remaining five treatments. Root exudate analogues also altered pH and redox potential, dependent on the type of addition (organic acid or sugar) and the concentration. Overall, these findings demonstrate the contrasting roles of composition and concentration of root exudate inputs in regulating greenhouse gas emissions from tropical peatlands. In turn this highlights how changes in plant communities will influence emissions through species specific inputs, and the possible impacts of increased root exudation driven by rising atmospheric CO2 and warming

    Peat properties, dominant vegetation type and microbial community structure in a tropical peatland

    Get PDF
    Tropical peatlands are an important carbon store and source of greenhouse gases, but the microbial component, particularly community structure, remains poorly understood. While microbial communities vary between tropical peatland land uses, and with biogeochemical gradients, it is unclear if their structure varies at smaller spatial scales as has been established for a variety of peat properties. We assessed the abundances of PLFAs and GDGTs, two membrane spanning lipid biomarkers in bacteria and fungi, and bacteria and archaea, respectively, to characterise peat microbial communities under two dominant and contrasting plant species, Campnosperma panamensis (a broadleaved evergreen tree), and Raphia taedigera (a canopy palm), in a Panamanian tropical peatland. The plant communities supported similar microbial communities dominated by Gram negative bacteria (38.9–39.8%), with smaller but significant fungal and archaeal communities. The abundance of specific microbial groups, as well as the ratio of caldarchaeol:crenarchaeol, isoGDGT: brGDGTs and fungi:bacteria were linearly related to gravimetric moisture content, redox potential, pH and organic matter content indicating their role in regulating microbial community structure. These results suggest that tropical peatlands can exhibit significant variability in microbial community abundance even at small spatial scales, driven by both peat botanical origin and localised differences in specific peat properties

    Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland

    Get PDF
    Tropical peatland ecosystems are a significant component of the global carbon cycle and feature a range of distinct vegetation types, but the extent of links between contrasting plant species, peat biogeochemistry and greenhouse gas fluxes remains unclear. Here we assessed how vegetation affects small scale variation of tropical peatland carbon dynamics by quantifying in situ greenhouse gas emissions over 1 month using the closed chamber technique, and peat organic matter properties using Rock-Eval 6 pyrolysis within the rooting zones of canopy palms and broadleaved evergreen trees. Mean methane fluxes ranged from 0.56 to 1.2 mg m−2 h−1 and were significantly greater closer to plant stems. In addition, pH, ranging from 3.95 to 4.16, was significantly greater closer to stems. A three pool model of organic matter thermal stability (labile, intermediate and passive pools) indicated a large labile pool in surface peat (35–42%), with equivalent carbon stocks of 2236–3065 g m−2. Methane fluxes were driven by overall substrate availability rather than any specific carbon pool. No peat properties correlated with carbon dioxide fluxes, suggesting a significant role for root respiration, aerobic decomposition and/or methane oxidation. These results demonstrate how vegetation type and inputs, and peat organic matter properties are important determinants of small scale spatial variation of methane fluxes in tropical peatlands that are affected by climate and land use change

    Root exudate analogues accelerate CO 2 and CH 4 production in tropical peat

    Get PDF
    Root exudates represent a large and labile carbon input in tropical peatlands, but their contribution to carbon dioxide (CO2) and methane (CH4) production remains poorly understood. Changes in species composition and productivity of peatland plant communities in response to global change could alter both inputs of exudates and associated greenhouse gas emissions. We used manipulative laboratory incubations to assess the extent to which root exudate quantity and chemical composition drives greenhouse gas emissions from tropical peatlands. Peat was sampled from beneath canopy palms (Raphia taedigera) and broadleaved evergreen trees (Campnosperma panamensis) in an ombrotrophic wetland in Panama. Root exudate analogues comprising a mixture of sugars and organic acids were added in solution to peats derived from both species, with CO2 and CH4 measured over time. CO2 and CH4 production increased under most treatments, but the magnitude and duration of the response depended on the composition of the added labile carbon mixture rather than the quantity of carbon added or the botanical origin of the peat. Treatments containing organic acids increased soil pH and altered other soil properties including redox potential but did not affect the activities of extracellular hydrolytic enzymes. CO2 but not CH4 production was found to be linearly related to microbial activity and redox potential. Our findings demonstrate the importance of root exudate composition in regulating greenhouse gas fluxes and propose that in situ plant species changes, particularly those associated with land use change, may account for small scale spatial variation in CO2 and CH4 fluxes due to species specific root exudate compositions

    Long‐term zero‐tillage enhances the protection of soil carbon in tropical agriculture

    Get PDF
    Contrasting tillage strategies not only affect the stability and formation of soil aggregates but also modify the concentration and thermostability of soil organic matter associated with soil aggregates. Understanding the thermostability and carbon retention ability of aggregates under different tillage systems is essential to ascertain potential terrestrial carbon storage. We characterised the concentration and thermostability of soil organic carbon (SOC) within various aggregate size classes under both zero and conventional tillage using novel Rock‐Eval pyrolysis. The nature of the pore systems was visualised and quantified by X‐ray Computed Tomography to link soil structure to organic carbon preservation and thermostability. Soil samples were collected from experimental fields in Botucatu, Brazil, which had been under zero‐tillage for 2, 15 and 31 years, along with adjacent fields under conventional tillage. Soils under zero‐tillage significantly increased pore connectivity whilst simultaneously decreasing inter‐aggregate porosity, providing a potential physical mechanism for protection of soil organic carbon in the 0‐20 cm soil layer. Changes in the soil physical characteristics associated with the adoption of zero‐tillage resulted in improved aggregate formation compared to conventionally tilled soils, especially when implemented for at least 15 years. In addition, we identified a chemical change in composition of organic carbon to a more recalcitrant fraction following conversion to zero‐tillage, suggesting aggregates were accumulating rather than mineralising soil organic carbon. These data reveal profound effects of different tillage systems upon soil structural modification, with important implications for the potential of zero‐tillage to increase carbon sequestration compared to conventional tillage

    Simulating carbon accumulation and loss in the central Congo peatlands

    No full text
    Peatlands of the central Congo Basin have accumulated carbon over millennia. They currently store some 29 billion tonnes of carbon in peat. However, our understanding of the controls on peat carbon accumulation and loss and the vulnerability of this stored carbon to climate change is in its infancy. Here we present a new model of tropical peatland development, DigiBog_Congo, that we use to simulate peat carbon accumulation and loss in a rain-fed interfluvial peatland that began forming ~20,000 calendar years Before Present (cal. yr BP, where ‘present’ is 1950 CE). Overall, the simulated age-depth curve is in good agreement with palaeoenvironmental reconstructions derived from a peat core at the same location as our model simulation. We find two key controls on long-term peat accumulation: water at the peat surface (surface wetness) and the very slow anoxic decay of recalcitrant material. Our main simulation shows that between the Late Glacial and early Holocene there were several multidecadal periods where net peat and carbon gain alternated with net loss. Later, a climatic dry phase beginning ~5200 cal. yr BP caused the peatland to become a long-term carbon source from ~3975 to 900 cal. yr BP. Peat as old as ~7000 cal. yr BP was decomposed before the peatland's surface became wetter again, suggesting that changes in rainfall alone were sufficient to cause a catastrophic loss of peat carbon lasting thousands of years. During this time, 6.4 m of the column of peat was lost, resulting in 57% of the simulated carbon stock being released. Our study provides an approach to understanding the future impact of climate change and potential land-use change on this vulnerable store of carbon
    corecore