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Abstract 12 

Tropical peatlands are a significant carbon store and source of carbon dioxide (CO2) and methane (CH4) to the 13 

atmosphere. Plants can contribute to these gas emissions through the release of root exudates, including sugars 14 

and organic acids amongst other biomolecules, but the roles of concentration and composition of exudates in 15 

regulating emissions remains poorly understood. We conducted a laboratory incubation to assess how the type 16 

and concentration of root exudate analogues regulate CO2 and CH4 production from tropical peats under anoxic 17 

conditions. For CO2 production, substrate concentration was the more important driver, with increased CO2 18 

fluxes following higher addition rates of four out of the six exudate analogues. In contrast, exudate type was the 19 

more important driver of CH4 production, with acetate addition associated with the greatest production, and 20 

inverse correlations between exudate concentration and CH4 emission for the remaining five treatments. Root 21 

exudate analogues also altered pH and redox potential, dependent on the type of addition (organic acid or sugar) 22 

and the concentration. Overall, these findings demonstrate the contrasting roles of composition and 23 

concentration of root exudate inputs in regulating greenhouse gas emissions from tropical peatlands. In turn this 24 

highlights how changes in plant communities will influence emissions through species specific inputs, and the 25 

possible impacts of increased root exudation driven by rising atmospheric CO2 and warming.   26 
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1. Introduction 27 

Globally, peatlands are a significant source of methane (CH4) emissions, contributing between 20 – 39% of 28 

annual CH4 production, as well as making a significant contribution to atmospheric carbon dioxide (CO2) 29 

emissions (Laanbroek, 2010). Tropical peatlands in particular are a significant carbon (C) store, accounting for 30 

only 11% of total peatland area but containing approximately 104.7 Gt C (Page et al., 2011, Dargie et al., 2017).  31 

Vegetation exerts a strong influence on tropical peatland greenhouse gas (GHG) emissions through inputs of 32 

leaf, root and shoot litter, which can determine key peat properties (Wright et al., 2013). Plants also release root 33 

exudates, which represent a significant source of labile C released at depth. This addition can impact peat 34 

properties, but the precise effect on net GHG emissions is unclear (Kuzyakov and Domanski, 2000). Root 35 

exudates have been ascribed a variety of functions, including as a means of chelating limiting minerals and 36 

nutrients and as a chemoattractant (Dakora and Phillips, 2002, Strom et al., 2002), and have been shown to 37 

directly affect properties such as pH (Dunfield et al., 1993, Yan et al., 1996). In turn, changes in nutrient 38 

availability and pH, amongst other peat properties, can regulate GHG emissions, through processes mediated by 39 

microbial communities (Sjӧgersten et al., 2011, Troxler et al., 2012). This represents an important process in the 40 

context of land use change in tropical peatlands, as any process that alters plant communities may affect the 41 

concentration and composition of exudate inputs, as well as alter peat properties (Tonks et al. 2017).   42 

We previously showed that root exudate analogues significantly increase peat microbial community activity and 43 

enhance the production of both CO2 and CH4 (Girkin et al., 2018a). However, the precise role of exudate 44 

concentration in regulating net fluxes remains to be clarified. This is an important knowledge gap as rates of 45 

root exudation are linked to rates of C fixation during photosynthesis, and therefore plant C inputs have a strong 46 

regulatory role in ecosystems with high rates of net primary productivity, including in tropical forested 47 

peatlands (Badri and Vivanco, 2009). 48 

This study assesses how six different root exudate components, added at three different concentrations, regulate 49 

GHG production from tropical peat. We hypothesised that: i) increased concentration of labile C addition 50 

significantly increases net CO2 and CH4 production; ii) the extent of increases in CO2 and CH4 production will 51 

vary between exudate types (i.e. sugars compared to organic acids); and iii) labile C additions alter soil pH and 52 

redox, with responses depending on the concentration and type of substrate.  53 
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2. Methods 54 

2.1. Study site 55 

Peat samples were collected in February 2015 from the 80 km2 ombrotrophic peatland at Changuinola, part of 56 

the San San Pond Sak freshwater and marine wetland located in Bocas del Toro province, Panama. The central 57 

peat dome is approximately 8 m deep and was initiated approximately 4000–5000 years ago (Phillips et al., 58 

1997). The site features seven distinct plant phasic communities beginning with a Rhizophora mangle mangrove 59 

swamp on the coastal margins, which is succeeded by palm swamp dominated by Raphia taedigera, a mixed 60 

forest stand, a monodominant Campnosperma panamensis forest stand, and a Myrica-Cyrilla bog-plain (Phillips 61 

et al., 1997). This vegetation gradient follows a pronounced decrease in nutrient availability from the margins to 62 

the centre of the wetland (Sjögersten et al., 2011, Cheesman et al., 2012), and trends in microbial community 63 

structure (Troxler et al., 2012). 64 

Six peat samples were collected from six plots in the mixed forest stand (09° 18’ 13.00”N, 82° 21’ 13.80”W) 65 

located approximately 600 m from the coast. Samples were collected from two points within each plot, located 66 

no more than 1 m apart, under both R. taedigera and C. panamensis plants, from a depth of 10–20 cm using a 67 

hand trowel to reduce the effect of inputs from recent litterfall and sample from a depth likely to receive regular 68 

inputs of exudates. Previously, variation in peat properties between the same set of samples, including pH, 69 

conductivity, redox potential, organic matter and gravimetric water content, was found to be low, with no 70 

statistically significant differences (Girkin et al., 2018a). Samples were sealed in zip-lock bags and transported 71 

to the Smithsonian Tropical Research Institute station in Bocas del Toro and refrigerated for four weeks 4 °C 72 

prior to transportation to the University of Nottingham, UK. Samples from the two points were homogenised to 73 

create a composite. Samples were not sieved but larger roots were removed by hand. 74 

 75 

2.2. Experimental design 76 

2.2.1. Root exudate compound selection 77 

Root exudate compounds (RECs) were selected using data from a previously reported literature survey of 78 

common sugars and organic acids from 33 tree species (Girkin et al., 2018a). The selected additions were 79 

glucose, sucrose and fructose sugars, and acetate, formate and oxalate organic acids. Compounds were added at 80 

three addition rates: of 0.1, 0.2 and 0.3 mg C g-1 day-1 (calculated using peat dry weight equivalent). These rates 81 

were selected to match previously reported root exudate input rates and represent low, medium and high plant 82 

photosynthetic activities in forest ecosystems, although  no reported data was available specifically for tropical 83 
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forested peatlands (Grayston and Campbell, 1996, Baudoin et al., 2003, Shi et al., 2011, Basiliko et al., 2012). 84 

All REC solutions were prepared by dissolving the sugar or organic acid in DI water and adjusting the pH to 5.5 85 

using NaOH and HCl, to match in situ measurements, and prevent a reduction in pH on treatment addition 86 

(Renella et al., 2006). Following preparation, REC solutions were sterilised by autoclaving and stored at 4 °C. 87 

 88 

2.3. Incubation 89 

Peat samples (7.5 g dry weight equivalent) were placed in 120 ml glass serum bottles (Kinesis, St. Neots, UK), 90 

and saturated with DI water to give a total occupied volume of 40 ml, leaving 80 ml headspace. This approach 91 

was adopted to simulate the water-saturated and anoxic conditions found at the site. Serum bottles were flushed 92 

for two minutes with nitrogen to displace headspace gases, before sealing with a rubber septa (13 × 19 × 12 mm; 93 

Rubber B.V., Hilversum, NL), and an aluminium crimp. Each of the 18 treatments and the control were 94 

replicated six times, resulting in 114 replicates. Serum bottles were placed in a 28 °C temperature control room 95 

for two weeks for acclimation prior to beginning the experiment. Serum bottles were subsequently opened, 96 

flushed with nitrogen for two minutes, and then re-sealed. Headspace gas samples were collected after seven 97 

days incubation, prior to the addition of REC solutions. REC solutions were added at a rate of 1 ml per day, over 98 

14 days, with 1 ml autoclaved de-ionised water as a control, between days 8 and 22. Headspace gas samples 99 

were collected on days 15 and 22 (during exudate addition) and on days 30, 38, 45 and 52. At the conclusion of 100 

the experiment bottles were opened to characterise peat properties. 101 

During headspace sampling, gas samples (5 ml) were extracted by syringe and analysed by gas chromatography 102 

(GC-2014, Shimadzu UK LTD, Milton Keynes, UK). CO2 and CH4 concentrations were determined using a 103 

single injection system, with a 1 ml sample loop that passed the gas sample using H2 as carrier through a non-104 

polar methyl silicone capillary column (CBP1-W12-100, 0.53 mm I.D., 12 m, 5 mm; Shimadzu UK LTD, 105 

Milton Keynes, UK). Thermal conductivity (TCD) and flame ionization (FID) detectors were used to measure 106 

CO2 and CH4, respectively (Wright et al. 2011). Gas concentrations were adjusted for incubation temperature 107 

(28 °C) and changes in pressure and headspace volume within the serum bottles, according to the ideal gas law. 108 

The rate of potential gas production, expressed as µg CO2 g
-1 hr-1 or µg CH4 g

-1 hr-1, was calculated assuming a 109 

linear accumulation rate of gases in the headspace (Hogg et al., 1992). 110 

 111 

2.4. Peat characterization 112 
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Three composite sub-samples from each plot were used to characterize peat physiochemical properties prior to 113 

beginning the incubation. Gravimetric water content was determined by analysis of the mass of water lost from 114 

10 g wet weight peat oven dried at 105 °C for 24 hours. Organic matter content was determined as the mass lost 115 

after ignition for 7 hours at 550 °C. Bulk density was measured by collecting 10 cm × 10 cm × 20 cm sections 116 

from the peat surface, and oven drying at 105 °C for 24 hours. Total peat carbon (C) and total nitrogen (N) were 117 

determined from 0.2 g dry, homogenised peat combusted using a total element analyser (Thermo Flash EA 118 

1112, CE Instruments, Wigan, UK). Solution pH and redox potential were measured using a Hanna 209 meter 119 

coupled with pH and redox probes at the conclusion of the experiment.  120 

 121 

2.5. Statistical analysis 122 

A repeated measurements ANOVA was used to assess differences in CO2 and CH4 fluxes between treatments, 123 

using a combined variable comprising REC compound and concentration of addition as a fixed effect. This 124 

approach prevented aliasing from the control treatment. Subsequently, a one-way ANOVA was used to assess 125 

differences in cumulative CO2 and CH4 production, with a post-hoc Bonferroni test used to assess differences 126 

between treatments. Differences in redox potential and pH were assessed using a one-way ANOVA. CO2 and 127 

CH4 fluxes were log-transformed to meet test assumptions. Significance was assessed at p < 0.05. All statistical 128 

analyses were carried out in Genstat v17.1, and figures were produced using Graphpad Prism v7.01. 129 

 130 

3. Results 131 

3.1. Peat properties 132 

The peat was strongly acidic (pH 5.3) and waterlogged, with high gravimetric moisture (81.7%) and low bulk 133 

density (0.1 g cm-3) (Table 1). Organic matter content was high (92.2%), as was total carbon and nitrogen, with 134 

a C:N of 16.9. In general, peats showed limited variability in properties between replicates. 135 

 136 

3.2. Exudate influence on greenhouse gas fluxes 137 

All REC additions were associated with a significant increase in CO2 fluxes (F18,90 = 12.72, p < 0.001, Fig. 1a-f), 138 

with a significant increase in fluxes over time (F6,570 = 1498.4, p < 0.001). In addition, there was a significant 139 

interaction between treatment and time (F108,570 = 8.97, p < 0.001). The greatest mean CO2 flux was from the 0.2 140 

mg C g-1 oxalate addition (8.92 µg CO2 g
-1 hr-1). In general, increased exudate concentration yielded greater CO2 141 

fluxes. The exception was formate, for which the highest mean CO2 flux occurred under the lowest exudate 142 
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concentrations, suggesting inhibition at higher concentrations. The most rapid increases in fluxes occurred with 143 

0.3 mg sugar additions, but this effect was transitory, observable only for the duration of exudate addition. By 144 

day 52 there were only limited differences in fluxes between concentrations. With organic acid additions, there 145 

were fewer discernible differences in response among different concentrations. In general, the greatest increase 146 

in fluxes occurred during the 14 day treatment period. Cumulative CO2 production also differed significantly 147 

between treatments (F18,90 = 12.00, p < 0.001, Fig. 3a). A post-hoc Bonferroni test indicated that oxalic 148 

treatments were associated with the greatest cumulative fluxes. 149 

With the exception of the 0.3 mg formate addition, all treatments significantly increased CH4 fluxes compared 150 

to the control (F18,90 = 3.86, p < 0.001, Fig. 2a-f), with a significant increase in fluxes over time (F6,570 = 491.8, p 151 

< 0.001). In addition, there was a significant interaction between treatment and time (F108,570 = 6.68, p < 0.001). 152 

Lower concentrations were generally associated with greater increases in CH4 fluxes, an observation consistent 153 

for all sugar treatments and formate addition (Fig. 3b). The 0.2 mg C g-1 formate addition had a mild inhibitory 154 

effect up to day 38 compared to the 0.1 mg C g-1 addition, with a reduction of fluxes compared to the control of 155 

up to 22% but by day 52, fluxes were 85% higher than the control. By comparison, the addition of 0.1 mg C g-1 156 

formate resulted in fluxes up to 190% higher than the control by day 52. Greatest CH4 production was 157 

consistently associated with acetate addition, with up to 426% increase in production relative to the control for 158 

the 0.1 mg C g-1 addition, 411% for 0.2 mg C g-1, and 377% for 0.3 mg. Cumulative CH4 fluxes were more 159 

sensitive to the concentration of the REC addition than CO2 fluxes, with reduced fluxes at higher concentrations 160 

for all treatments, with the exception of acetate (F18,90 = 4.52, p < 0.001, Fig. 3b).  161 

 162 

3.3. Exudate effects on peat properties 163 

REC addition significantly altered peat pH, with the effect dependent on both concentration and the compound 164 

added (F18,87.5 = 92.1, p < 0.001, Fig. 4a). Low concentration sugar additions (0.1 mg) reduced pH to 4.8 – 5.1. 165 

High concentration additions (0.3 mg) caused a greater reduction in pH to 3.6. In contrast, organic acid additions 166 

increased pH, with no significant effect of increased concentration on pH.  167 

REC addition significantly affected redox potential, with extent of the response affected by both the type of 168 

REC addition and concentration (F18,88.3 = 152.84, p < 0.001, Fig. 4b). All sugar additions increased redox 169 

potential compared to the control, with more pronounced increases at higher concentrations. In contrast, all 170 

organic acid additions significantly decreased redox potential, with the greatest decreases generally found at the 171 
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highest REC concentrations. The exception to this pattern was 0.2 mg C g-1 addition of oxalate which resulted in 172 

a slightly higher redox potential than 0.1 and 0.3 mg C g-1 additions.  173 

 174 

4. Discussion 175 

We previously showed that the addition of RECs in combination increased net CO2 and CH4 fluxes more than 176 

higher concentration additions comprising fewer individual components (Girkin et al., 2018a). For example, the 177 

addition of 0.3 mg C g-1 comprising three sugars and one organic acid added to an anoxic peat soil resulted in 178 

lower cumulative fluxes than a 0.2 mg C g-1 addition comprising four organic acids. In this study, we 179 

demonstrate that low concentrations of specific RECs may have a disproportionally important effect on GHG 180 

emissions, as higher REC concentrations were not necessarily associated with the greatest CO2 and CH4 181 

production.  182 

All sugar solution additions and oxalate additions increased CO2 fluxes more rapidly than acetate and formate 183 

additions, and were associated with greater cumulative production. Previous incubation experiments 184 

demonstrated the rapid use of sugars by peat microbial communities (Jones & Murphy, 2007) and increased 185 

activity of hydrolytic enzymes (Shi et al. 2011). Acetate, the most important substrate for methanogenesis, was 186 

associated with the greatest CH4 efflux, with increases in production occurring more rapidly than other 187 

additions. Acetate has been estimated to contribute to up to two-thirds of net CH4 production, with formate 188 

recognised as the second most important substrate (Ferry, 1992, Fox & Comerford, 1990).  189 

For all REC additions, CO2 production increased more rapidly than CH4 production, in keeping with previous 190 

incubation studies of tropical peats (Avery et al., 2003, Galand et al., 2005), an effect driven by the preferential 191 

depletion of a series of terminal electron acceptors during C mineralisation (Lipson et al., 2010). In four of six 192 

additions, higher concentration additions yielded greater CO2 production. CH4 production was more dependent 193 

on the type of addition than the concentration, but with some inhibition of fluxes at higher concentrations for 194 

four of six treatments. In both cases, the extent of decomposition and net fluxes of both gases arising from labile 195 

C additions may be constrained in part by nutrient availability (Hoyos-Santillan et al., 2018), and differences in 196 

inherent organic matter properties (Upton et al., 2018).  197 

Studies using 13C and 14C isotope methodology have demonstrated that labile C additions can significantly 198 

enhance the decomposition of older, more recalcitrant organic matter in a process termed priming, and that the 199 

effect is frequently determined by the chemical composition of the additions (Verma et al., 1995, Hamer and 200 

Marschner, 2002). This has been speculated as being driven by a combination of the activation of specific 201 
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microbial groups and the behaviour of the individual organic molecules added. Conversely, it has been reported 202 

that some additions, for example oxalate, can bind to lignin structures, reducing availability for enzyme activity 203 

(Piccolo et al., 1996). Part of the difference in fluxes between organic acid treatments may therefore be due to 204 

different rates of organic acid adsorption, which can reduce C mineralisation, rates of decomposition and overall 205 

microbial growth (Lopez-Hernandez et al., 1986). Monovalent organic acids, including acetate and formate, are 206 

more weakly adsorbed by soils compared to divalent organic acids such as oxalate (Jones et al. 2003), although 207 

these processes can be very slow, occurring at the rate of hours to months (Van Hees et al., 2005). Microbial 208 

uptake of low weight molecular compounds, including organic acids and sugars, is a much more rapid process 209 

which occurs over several minutes (van Hees et al., 2005). A combination of differences in the relative 210 

adsorption of organic acids versus microbial uptake likely explains the resulting differences in GHG fluxes 211 

between REC addition types. It is also plausible that some parts of the microbial community may also be more 212 

dependent on the specific exudates released by the plant species and therefore some of the differences in 213 

response to contrasting REC additions may be because the community is not fully adapted for its decomposition 214 

(DeAngelis et al., 2009, Schimel & Schaefer, 2012). Over time, changes in microbial community composition 215 

may explain the increase in CH4 production in oxalate treatments by day 56.   216 

Organic acid additions have been reported to inhibit methanotroph activity under aerobic conditions (Wieczorek 217 

et al., 2011), inhibit enzyme activities, and alter bacterial taxa diversity and abundance (Shi et al., 2011). High 218 

concentrations of acetate can have an inhibitory effect at pH < 4.5 due to the protonated forms disturbing 219 

microbial cell membranes (Russell, 1992). As higher concentrations of formate were only associated with 220 

reduced CH4 fluxes, and these treatments were associated with an increase in pH, it is possible that the 221 

methanogenic community was particularly sensitive to this perturbation, although previous studies have 222 

indicated that methanogen activity increases at higher pH (Ye et al. 2012). Autoclaving may have resulted in the 223 

thermal decomposition of formate, resulting in carbon monoxide (CO) formation, which can inhibit 224 

methanogenesis (Oelgeschläger & Rother, 2009). However, this process is unlikely to fully account for the 225 

observed results, as CO toxicity would also have inhibited CO2 production which did not differ significantly 226 

between the three formate concentrations, or compared to high concentration oxalate additions. High formate 227 

concentrations have been reported to inhibit acetoclastic methanogenesis (the dominant CH4 production 228 

pathway), which have resulted in reduced cumulative CH4 production (Guyot, 1986, Guyot & Brauman, 1986). 229 

Subsequently, the gradual consumption of formate may have resulted in a reduction in inhibition and account for 230 

the increased CH4 production for the 0.1 mg C g-1
 treatment between 45 and 52 days (Figure 2e).  231 
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All organic acid additions increased pH significantly compared to the control, whereas sugar additions 232 

decreased pH. Microbial degradation of carboxylic acids consumes H+, liberating OH-
 and CO2 (Gramss et al., 233 

2003), while the utilisation of sugars generates H+ (Srinivasan and Mahadevan, 2010). Increases in pH after 234 

organic acid additions are associated with significant shifts in microbial communities (Shi et al., 2011) and 235 

increases in CO2 (Yan et al., 1996) and CH4 production (Wang et al., 1993).  236 

Redox potential increased with sugar addition, and decreased with organic acid addition. Addition of labile plant 237 

residues can also reduce redox potential as high respiration depletes oxygen (Fig. 4a) (Flessa and Beese, 1995). 238 

Changes in pH, redox potential and conductivity are closely coupled, because redox reactions frequently involve 239 

the transfer of H+ due to changes in the oxidative state of Fe, Mn or N (Husson, 2013). Combined, changes in 240 

pH and redox potential can affect microbial community structure and activity may account for the inhibition of 241 

GHG production at higher REC concentrations. Tropical peatland microbial communities are likely to be 242 

relatively well-adapted to changing redox potential due to frequent fluctuations in water table height, altering 243 

the balance between anoxic conditions favouring methanogens and CH4 production, methanotrophs and CH4 244 

oxidation, and heterotrophic respiration (Tokarz & Urban, 2015). 245 

In situ, root inputs of exudates contribute significantly to net GHG fluxes. For example, approximately two-246 

thirds of CO2 emissions from the Changuinola mixed forest stand are root-derived, an estimate which includes 247 

components from both root respiration and microbial use of exudates (Girkin et al., 2018b). This is particularly 248 

important in the context of land use change in tropical peatlands, for example the expansion of plantation 249 

agriculture in Southeast Asia. Malaysia alone has undergone a 150% increase in land area planted by oil palm, 250 

with significant expansion onto peatlands (FAO, 2016, Pirker et al., 2016). While this changes peat physical 251 

properties (Tonks et al. 2017), our results suggest that any changes in plant community composition that alter 252 

root exudate profiles may result in substantial changes to GHG emissions. However, due to the sparsity of 253 

studies assessing root exudate profiles of tropical plant species, particularly palms, the precise effect on GHG 254 

fluxes remains to be elucidated. Climate change may also significantly affect in situ root exudation. Elevated 255 

atmospheric CO2 has been found to increase rates of root exudation in wetland ecosystems (Sanchez-Carrillo et 256 

al., 2018). Increases in temperature have also been reported to increase rates of exudation in some tree species 257 

(Uselman et al., 2000), and alter the composition of exudate profiles (Vančura, 1967, Badri & Vicanco 2009). 258 

Our results demonstrate that the type and concentration of root exudates influence CO2 and CH4 production. For 259 

CO2 production, substrate concentration was the most important driver of fluxes over the short term, whereas for 260 

CH4 production the most critical driver is exudate type, with peat CH4 fluxes most sensitive to acetate addition. 261 
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Moreover, there is an inverse relationship between REC addition concentration and CH4 fluxes. These effects 262 

are most likely driven by differing levels of adsorption and shifts in peat properties following addition. These 263 

findings are particularly important in the context of understanding how plant inputs are able to regulate GHG 264 

emissions from tropical peatlands, because any process which alters plant community composition may alter 265 

root exudate profiles. 266 
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Tables and figures 440 

Table 1: In situ site properties of the mixed forest stand on the Changuinola peat deposit. Means ± 1 SEM. 441 

 442 

Fig. 1: CO2 flux derived from (a) fructose, (b) glucose and (c) sucrose, (d) acetate, (e) formate and (f) oxalate 443 

addition at 0.1 – 0.3 mg g-1 day-1. Means ± 1 SEM (n = 6). SEM not shown if smaller than symbol. 444 

 445 

Fig. 2: CH4 flux derived from (a) fructose, (b) glucose and (c) sucrose, (d) acetate, (e) formate and (f) oxalate 446 

addition at 0.1 – 0.3 mg g-1 day-1. Means ± 1 SEM (n = 6). SEM not shown if smaller than symbol. 447 

 448 

Fig. 3: Cumulative (a) CO2 flux, (b) CH4 flux derived from REC compound at addition rates of 0.1 – 0.3 mg g-1 449 

day-1. Means ± 1 SEM (n = 6). Letters indicate significant differences from a post-hoc Bonferroni test (p < 0.05) 450 

for all compositions and concentrations.  451 

 452 

Fig. 4: Root exudate component influence on (a) pH, and (b) redox potential from addition rates of 0.1 – 0.3 mg 453 

g-1 day-1. Means ± 1 SEM (n = 6). Letters indicate significant differences from a post-hoc Bonferroni test (p < 454 

0.05) for all compositions and concentrations. 455 

 456 
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Property    

Gravimetric water content (%) 81.7 ± 4.7 

Organic matter content (%) 92.2 ± 1.7 

Bulk density (g cm
-3

) 0.1 ± 0.0 

pH 5.3 ± 0.1 

C (%) 44.1 ± 1.2 

N (%) 2.6 ± 0.1 

C:N 16.9 ± 0.0 
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• CO2 production increased at higher C input rates. 

• CH4 production was generally inhibited at higher C input rates. 

• Acetate additions were associated with highest CH4 production.  

• Redox potential and pH showed concentration and composition dependent responses. 


