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Abstract

Tropical peatlands are a significant carbon stoie source of carbon dioxide (gCand methane (Chito the
atmosphere. Plants can contribute to these gasiemisthrough the release of root exudates, inetudugars
and organic acids amongst other biomolecules, lmitréles of concentration and composition of exeslah
regulating emissions remains poorly understood.cdfelucted a laboratory incubation to assess howyfie
and concentration of root exudate analogues regy@a} and CH production from tropical peats under anoxic
conditions. For C@ production, substrate concentration was the mowgoitant driver, with increased GO
fluxes following higher addition rates of four aftthe six exudate analogues. In contrast, exugate was the
more important driver of CHproduction, with acetate addition associated wlit greatest production, and
inverse correlations between exudate concentraimhCH emission for the remaining five treatments. Root
exudate analogues also altered pH and redox pafiet¢ipendent on the type of addition (organic acidugar)
and the concentration. Overall, these findings destvate the contrasting roles of composition and
concentration of root exudate inputs in regulatingenhouse gas emissions from tropical peatlandsirh this
highlights how changes in plant communities wifluence emissions through species specific inpartg, the

possible impacts of increased root exudation driwerising atmospheric CGand warming.
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1. Introduction

Globally, peatlands are a significant source ofhameé (CH) emissions, contributing between 20 — 39% of
annual CH production, as well as making a significant cdnttion to atmospheric carbon dioxide (O
emissiongLaanbroek, 2010). Tropical peatlands in particala a significant carbon (C) store, accounting for
only 11% of total peatland area but containing agjpnately 104.7 Gt C (Page et al., 2011, Dargial e2017).
Vegetation exerts a strong influence on tropicaltip@d greenhouse gas (GHG) emissions through snpiut
leaf, root and shoot litter, which can determing geat properties (Wright et al., 2013). Plant® atdease root
exudates, which represent a significant sourceabilld C released at depth. This addition can impeett
properties, but the precise effect on net GHG daomissis unclear (Kuzyakov and Domanski, 2000). Root
exudates have been ascribed a variety of functimefyding as a means of chelating limiting minsrahd
nutrients and as a chemoattractant (Dakora andig3hik002, Strom et al., 2002), and have been shtow
directly affect properties such as pH (Dunfieldaét 1993, Yan et al., 1996). In turn, changes uriant
availability and pH, amongst other peat properiias) regulate GHG emissions, through processesateeldby
microbial communities (8persten et al., 2011, Troxler et al., 2012). Thjgresents an important process in the
context of land use change in tropical peatlandsarsy process that alters plant communities masctathe
concentration and composition of exudate inputsyelkas alter peat properties (Tonks et al. 2017).

We previously showed that root exudate analogugsfigiantly increase peat microbial community aityivand
enhance the production of both €@&nd CH (Girkin et al., 2018a). However, the precise rofeegudate
concentration in regulating net fluxes remains ¢octarified. This is an important knowledge gapraes of
root exudation are linked to rates of C fixatiomidg photosynthesis, and therefore plant C inpatgeha strong
regulatory role in ecosystems with high rates of pgmary productivity, including in tropical fortsd
peatlands (Badri and Vivanco, 2009).

This study assesses how six different root exudameponents, added at three different concentratiegsilate
GHG production from tropical peat. We hypothesiglkdt: i) increased concentration of labile C additi
significantly increases net G@nd CH production; ii) the extent of increases in £&ahd CH production will
vary between exudate types (i.e. sugars comparethtmic acids); and iii) labile C additions alsmil pH and

redox, with responses depending on the concentratid type of substrate.



54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

2. Methods

2.1. Study site
Peat samples were collected in February 2015 fr@80 knmi ombrotrophic peatland at Changuinola, part of
the San San Pond Sak freshwater and marine wdtiaated in Bocas del Toro province, Panama. Théralen
peat dome is approximately 8 m deep and was iediapproximately 4000-5000 years ago (Phillipslet a
1997). The site features seven distinct plant ghesmmunities beginning withRhizophora manglemangrove
swamp on the coastal margins, which is succeedguhby swamp dominated Wyaphiataedigera a mixed
forest stand, a monodominanaf@pnosperma panamensisest stand, and yrica-Cyrilla bog-plain (Phillips
et al., 1997). This vegetation gradient followsrarunced decrease in nutrient availability from thargins to
the centre of the wetland (Sjégersten et al., 2@teesman et al., 2012), and trends in microbiaireanity
structure (Troxler et al., 2012).
Six peat samples were collected from six plotshim mixed forest stand (09° 18’ 13.00”N, 82° 21'8&BW)
located approximately 600 m from the coast. Sampiere collected from two points within each platzdted
no more than 1 m apart, under b&htaedigeraandC. panamensiglants, from a depth of 10-20 cm using a
hand trowel to reduce the effect of inputs fromergditterfall and sample from a depth likely taeése regular
inputs of exudates. Previously, variation in peaipprties between the same set of samples, inguplih,
conductivity, redox potential, organic matter anéwmnetric water content, was found to be low, witt
statistically significant differences (Girkin et,a2018a). Samples were sealed in zip-lock bagstramdported
to the Smithsonian Tropical Research Instituteietain Bocas del Toro and refrigerated for four ked °C
prior to transportation to the University of Nogllam, UK. Samples from the two points were homaggshio

create a composite. Samples were not sieved lggrlanots were removed by hand.

2.2. Experimental design
2.2.1. Root exudate compound selection
Root exudate compounds (RECs) were selected usitey fdom a previously reported literature survey of
common sugars and organic acids from 33 tree spg@ekin et al., 2018a). The selected additiongewe
glucose, sucrose and fructose sugars, and acfetatgte and oxalate organic acids. Compounds wadedhat
three addition rates: of 0.1, 0.2 and 0.3 mg'@ay" (calculated using peat dry weight equivalent). Seheates
were selected to match previously reported rootlatalinput rates and represent low, medium and piligght

photosynthetic activities in forest ecosystemdialgh no reported data was available specifidaliytropical
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forested peatlands (Grayston and Campbell, 1996d&a et al., 2003, Shi et al., 2011, Basiliko let 2012).
All REC solutions were prepared by dissolving thgar or organic acid in DI water and adjustingphtto 5.5
using NaOH and HCI, to matdh situ measurements, and prevent a reduction in pH aintent addition

(Renella et al., 2006). Following preparation, R&utions were sterilised by autoclaving and staed °C.

2.3. Incubation
Peat samples (7.5 g dry weight equivalent) weregalan 120 ml glass serum bottles (Kinesis, St.tdlddK),
and saturated with DI water to give a total occdpielume of 40 ml, leaving 80 ml headspace. Thigraach
was adopted to simulate the water-saturated anxi@anonditions found at the site. Serum bottlesenfshed
for two minutes with nitrogen to displace headspgases, before sealing with a rubber septa (13 1B mm;
Rubber B.V., Hilversum, NL), and an aluminium crimipach of the 18 treatments and the control were
replicated six times, resulting in 114 replicatésrum bottles were placed in a 28 °C temperatungaaoom
for two weeks for acclimation prior to beginningetexperiment. Serum bottles were subsequently apene
flushed with nitrogen for two minutes, and thersealed. Headspace gas samples were collectedsaften
days incubation, prior to the addition of REC siolin$. REC solutions were added at a rate of 1 mtpg, over
14 days, with 1 ml autoclaved de-ionised water @orarol, between days 8 and 22. Headspace gaslesmp
were collected on days 15 and 22 (during exudadiiad) and on days 30, 38, 45 and 52. At the assioh of
the experiment bottles were opened to charactpaaeproperties.
During headspace sampling, gas samples (5 ml) esdracted by syringe and analysed by gas chroneatbgr
(GC-2014, Shimadzu UK LTD, Milton Keynes, UK). g@nd CH concentrations were determined using a
single injection system, with a 1 ml sample looatthassed the gas sample usingahll carrier through a non-
polar methyl silicone capillary column (CBP1-W1261®.53 mm I.D., 12 m, 5 mm; Shimadzu UK LTD,
Milton Keynes, UK). Thermal conductivity (TCD) arfldme ionization (FID) detectors were used to measu
CO, and CH, respectively (Wright et al. 2011). Gas conceitret were adjusted for incubation temperature
(28 °C) and changes in pressure and headspace &alitinin the serum bottles, according to the idge law.
The rate of potential gas production, expressadga€Q g* hr' or ug CH g hr', was calculated assuming a

linear accumulation rate of gases in the headsftéagg et al., 1992).

2.4. Peat characterization
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Three composite sub-samples from each plot weré tseharacterize peat physiochemical properties po
beginning the incubation. Gravimetric water cont@at determined by analysis of the mass of wattrftom

10 g wet weight peat oven dried at 105 °C for 2drhoOrganic matter content was determined as #ss host
after ignition for 7 hours at 550 °C. Bulk densitgs measured by collecting 10 cm x 10 cm x 20 orticses
from the peat surface, and oven drying at 105 ¥@4#bhours. Total peat carbon (C) and total nitroi¢) were
determined from 0.2 dry, homogenised peat combusted using a total eleamealyser (Thermo Flash EA
1112, CE Instruments, Wigan, UK). Solution pH aadax potential were measured using a Hanna 209 mete

coupled with pH and redox probes at the conclusfdhe experiment.

25. Statigtical analysis
A repeated measurements ANOVA was used to assHegedces in C@and CH fluxes between treatments,
using a combined variable comprising REC compoumdi @ncentration of addition as a fixed effect. sThi
approach prevented aliasing from the control treatmSubsequently, a one-way ANOVA was used tosasse
differences in cumulative GCand CH production, with a post-hoc Bonferroni test usedssess differences
between treatments. Differences in redox poteitiel pH were assessed using a one-way ANOVA, &t
CH, fluxes were log-transformed to meet test assumgptiSignificance was assessed at p < 0.05. Allstitzi

analyses were carried out in Genstat v17.1, anodigywere produced using Graphpad Prism v7.01.

3. Reaults

3.1. Peat properties
The peat was strongly acidic (pH 5.3) and waterafgvith high gravimetric moisture (81.7%) and lbulk
density (0.1 g ci) (Table 1). Organic matter content was high (92,28 was total carbon and nitrogen, with

a C:N of 16.9. In general, peats showed limitedalality in properties between replicates.

3.2. Exudateinfluence on greenhouse gas fluxes
All REC additions were associated with a significewcrease in Cefluxes (kg o= 12.72, p < 0.001, Fig. 1a-f),
with a significant increase in fluxes over time ép= 1498.4, p < 0.001). In addition, there was a ifitant
interaction between treatment and time§k,;= 8.97, p < 0.001). The greatest mean, @x was from the 0.2
mg C g oxalate addition (8.92 pg G@™ hr). In general, increased exudate concentratiomnlgikhreater CO

fluxes. The exception was formate, for which thghleist mean Cg{Xlux occurred under the lowest exudate
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concentrations, suggesting inhibition at higheraearrations. The most rapid increases in fluxesimed with
0.3 mg sugar additions, but this effect was tramgjtobservable only for the duration of exudatditain. By
day 52 there were only limited differences in flaxeetween concentrations. With organic acid aduitiohere
were fewer discernible differences in response a@fferent concentrations. In general, the gredtesease
in fluxes occurred during the 14 day treatmentqeeriCumulative C@ production also differed significantly
between treatments {fy = 12.00, p < 0.001, Fig. 3a). A post-hoc Bonferreeét indicated that oxalic
treatments were associated with the greatest ctinriffuxes.

With the exception of the 0.3 mg formate additial treatments significantly increased £ftuxes compared
to the control (I g0= 3.86, p < 0.001, Fig. 2a-f), with a significantiease in fluxes over timeg&o= 491.8, p

< 0.001). In addition, there was a significant iattion between treatment and timeggk,= 6.68, p < 0.001).
Lower concentrations were generally associated grigater increases in GHuxes, an observation consistent
for all sugar treatments and formate addition (Big). The 0.2 mg C tformate addition had a mild inhibitory
effect up to day 38 compared to the 0.1 mg'@dgition, with a reduction of fluxes compared te tlontrol of
up to 22% but by day 52, fluxes were 85% highentte control. By comparison, the addition of 0.4 &1g*
formate resulted in fluxes up to 190% higher thha tontrol by day 52. Greatest ¢ldroduction was
consistently associated with acetate addition, wjilto 426% increase in production relative todbatrol for
the 0.1 mg C g addition, 411% for 0.2 mg C'gand 377% for 0.3 mg. Cumulative ¢ftixes were more
sensitive to the concentration of the REC additian CQ fluxes, with reduced fluxes at higher concentration

for all treatments, with the exception of acet&ig §o= 4.52, p < 0.001, Fig. 3b).

3.3. Exudate effects on peat properties
REC addition significantly altered peat pH, witfe teffect dependent on both concentration and thgpoand
added (ks g75= 92.1, p < 0.001, Fig. 4a). Low concentration swgditions (0.1 mg) reduced pH to 4.8 — 5.1.
High concentration additions (0.3 mg) caused atgreaduction in pH to 3.6. In contrast, organicaxditions
increased pH, with no significant effect of incredgoncentration on pH.
REC addition significantly affected redox potentiafth extent of the response affected by bothtipe of
REC addition and concentration {s 3= 152.84, p < 0.001, Fig. 4b). All sugar additidnsreased redox
potential compared to the control, with more prame®d increases at higher concentrations. In cdntadls

organic acid additions significantly decreased reglotential, with the greatest decreases genei@ligd at the
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highest REC concentrations. The exception to thttepn was 0.2 mg C'mddition of oxalate which resulted in

a slightly higher redox potential than 0.1 and®@C g" additions.

4. Discussion

We previously showed that the addition of RECsambination increased net G@nd CH fluxes more than
higher concentration additions comprising feweivithihal components (Girkin et al., 2018a). For epénthe
addition of 0.3 mg C ‘§comprising three sugars and one organic acid attdad anoxic peat soil resulted in
lower cumulative fluxes than a 0.2 mg C gddition comprising four organic acids. In this dstu we
demonstrate that low concentrations of specific RE@y have a disproportionally important effect@dG
emissions, as higher REC concentrations were noéssarily associated with the greatest,Gdd CH
production.

All sugar solution additions and oxalate additiomseased C®fluxes more rapidly than acetate and formate
additions, and were associated with greater cuimalaproduction. Previous incubation experiments
demonstrated the rapid use of sugars by peat nigdrobmmunities (Jones & Murphy, 2007) and incréease
activity of hydrolytic enzymes (Shi et al. 2011)cédiate, the most important substrate for metharesignwas
associated with the greatest CHfflux, with increases in production occurring morapidly than other
additions. Acetate has been estimated to contritutep to two-thirds of net CHproduction, with formate
recognised as the second most important substratey( 1992, Fox & Comerford, 1990).

For all REC additions, CQOproduction increased more rapidly than {ioduction, in keeping with previous
incubation studies of tropical peats (Avery et 2003, Galand et al., 2005), an effect driven leygheferential
depletion of a series of terminal electron acceptiuring C mineralisation (Lipson et al., 2010)foar of six
additions, higher concentration additions yieldegager CQproduction. CH production was more dependent
on the type of addition than the concentration, With some inhibition of fluxes at higher concetitas for
four of six treatments. In both cases, the extédiecomposition and net fluxes of both gases agifiiom labile

C additions may be constrained in part by nutrartilability (Hoyos-Santillan et al., 2018), andfeliences in
inherent organic matter properties (Upton et &1,8).

Studies using>C and'“C isotope methodology have demonstrated that labiledditions can significantly
enhance the decomposition of older, more recaltitvaganic matter in a process termed priming, thad the
effect is frequently determined by the chemical position of the additions (Verma et al., 1995, Hamued

Marschner, 2002). This has been speculated as loimgn by a combination of the activation of sfieci
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microbial groups and the behaviour of the individuganic molecules added. Conversely, it has lveparted
that some additions, for example oxalate, can riggnin structures, reducing availability for gmae activity
(Piccolo et al., 1996). Part of the difference lixés between organic acid treatments may therdferdue to
different rates of organic acid adsorption, whielm ceduce C mineralisation, rates of decomposéimhoverall
microbial growth (Lopez-Hernandez et al., 1986).ndealent organic acids, including acetate and foemare
more weakly adsorbed by soils compared to divadegénic acids such as oxalate (Jones et al. 2a0Bpugh
these processes can be very slow, occurring atatieeof hours to months (Van Hees et al., 2005krdfial
uptake of low weight molecular compounds, includarganic acids and sugars, is a much more rapideggo
which occurs over several minutes (van Hees et28l05). A combination of differences in the relativ
adsorption of organic acids versus microbial upthbkely explains the resulting differences in GHExEs
between REC addition types. It is also plausibé #ome parts of the microbial community may alsartore
dependent on the specific exudates released bylthe species and therefore some of the differemees
response to contrasting REC additions may be bedaescommunity is not fully adapted for its decaosipion
(DeAngelis et al., 2009, Schimel & Schaefer, 20er time, changes in microbial community compoasit
may explain the increase in GHroduction in oxalate treatments by day 56.

Organic acid additions have been reported to ibhilgthanotroph activity under aerobic conditiondg®¥orek

et al., 2011), inhibit enzyme activities, and altecterial taxa diversity and abundance (Shi et28i11). High
concentrations of acetate can have an inhibitofgcefat pH < 4.5 due to the protonated forms dishg
microbial cell membranes (Russell, 1992). As higbencentrations of formate were only associated wit
reduced CH fluxes, and these treatments were associated avitlincrease in pH, it is possible that the
methanogenic community was particularly sensitive this perturbation, although previous studies have
indicated that methanogen activity increases dtdrigH (Ye et al. 2012). Autoclaving may have resiin the
thermal decomposition of formate, resulting in carbmonoxide (CO) formation, which can inhibit
methanogenesis (Oelgeschlager & Rother, 2009). Menyehis process is unlikely to fully account fitre
observed results, as CO toxicity would also havebited CQ production which did not differ significantly
between the three formate concentrations, or coadpty high concentration oxalate additions. Highmate
concentrations have been reported to inhibit atadétic methanogenesis (the dominant ,Cptoduction
pathway), which have resulted in reduced cumula@iifz production (Guyot, 1986, Guyot & Brauman, 1986).
Subsequently, the gradual consumption of formatg Imaae resulted in a reduction in inhibition andamt for

the increased Chproduction for the 0.1 mg C'greatment between 45 and 52 days (Figure 2e).
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All organic acid additions increased pH signifidgntompared to the control, whereas sugar additions
decreased pH. Microbial degradation of carboxytiia consumes Hliberating OHandCO, (Gramss et al.,
2003), while the utilisation of sugars generatés(Srinivasan and Mahadevan, 2010). Increases irafét
organic acid additions are associated with sigaificshifts in microbial communities (Shi et al.,12) and
increases in CO(Yan et al., 1996) and GHbroduction (Wang et al., 1993).

Redox potential increased with sugar addition, decteased with organic acid addition. Additionaifile plant
residues can also reduce redox potential as hggiregion depletes oxygen (Fig. 4a) (Flessa an&eE995).
Changes in pH, redox potential and conductivityc@osely coupled, because redox reactions frequémntblve
the transfer of Hdue to changes in the oxidative state of Fe, M gHusson, 2013). Combined, changes in
pH and redox potential can affect microbial commystructure and activity may account for the iritidm of
GHG production at higher REC concentrations. Trapijgeatland microbial communities are likely to be
relatively well-adapted to changing redox potentiaé to frequent fluctuations in water table heiglitering
the balance between anoxic conditions favouringharegens and CHoroduction, methanotrophs and £H
oxidation, and heterotrophic respiration (TokartJéban, 2015).

In sity, root inputs of exudates contribute significartttynet GHG fluxes. For example, approximately two-
thirds of CQ emissiondrom the Changuinola mixed forest stand are rooivdd, an estimate which includes
components from both root respiration and microbss of exudates (Girkin et al., 2018b). This idipalarly
important in the context of land use change init@ppeatlands, for example the expansion of ptara
agriculture in Southeast Asia. Malaysia alone hadergone a 150% increase in land area planted|palmn,
with significant expansion onto peatlands (FAO, @0Rirker et al., 2016). While this changes peatsyaal
properties (Tonks et al. 2017), our results sugdestany changes in plant community compositicat #iter
root exudate profiles may result in substantialnges to GHG emissions. However, due to the spaddity
studies assessing root exudate profiles of trogitaait species, particularly palms, the preciseatfon GHG
fluxes remains to be elucidated. Climate change alsy significantly affectn situ root exudation. Elevated
atmospheric C®has been found to increase rates of root exudatieretland ecosystems (Sanchez-Carrillo et
al., 2018). Increases in temperature have also bgmrted to increase rates of exudation in soe® species
(Uselman et al., 2000), and alter the compositioexadate profiles (Vatura, 1967, Badri & Vicanco 2009).
Our results demonstrate that the type and condentraf root exudates influence G@nd CH production. For
CO, production, substrate concentration was the nmygbrtant driver of fluxes over the short term, veees for

CH, production the most critical driver is exudategymwith peat Chifluxes most sensitive to acetate addition.
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Moreover, there is an inverse relationship betwe&€ addition concentration and ¢Huxes. These effects
are most likely driven by differing levels of adgtion and shifts in peat properties following addit These
findings are particularly important in the conteftunderstanding how plant inputs are able to @guGHG
emissions from tropical peatlands, because anyegeowhich alters plant community composition magral

root exudate profiles.
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Tablesand figures

Table 1:In situsite properties of the mixed forest stand on thar@uinola peat deposit. Means + 1 SEM.

Fig. 1: CQ flux derived from(a) fructose, (b) glucose and (c) sucrose, (d)aaeete) formate and (f) oxalate

addition at 0.1 — 0.3 mg'gday”. Means + 1 SEM (n = 6). SEM not shown if smaltert symbol.

Fig. 2: CH, flux derived from(a) fructose, (b) glucose and (c) sucrose, (d)aaeete) formate and (f) oxalate

addition at 0.1 — 0.3 mg'gday”. Means + 1 SEM (n = 6). SEM not shown if smalkert symbol.

Fig. 3: Cumulative (a) C&X¥lux, (b) CH, flux derived from REC compound at addition raté§.4 — 0.3 mg g
day’. Means + 1 SEM (n = 6). Letters indicate significéifferences from a post-hoc Bonferroni test (f.85)

for all compositions and concentrations.
Fig. 4: Root exudate component influence on (a) il (b) redox potential from addition rates of 9.0.3 mg

g* day'. Means + 1 SEM (n = 6). Letters indicate significdifferences from a post-hoc Bonferroni test (p <

0.05) for all compositions and concentrations.
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Property

Gravimetric water content (%)
Organic matter content (%)
Bulk density (g cm™)

pH

C (%)

N (%)

C:N

81.7
92.2
0.1
5.3
44.1
2.6
16.9

+ + + + 1+ + +

4.7
1.7
0.0
0.1
1.2
0.1
0.0




CO, production increased at higher C input rates.
CH, production was generally inhibited at higher C input rates.
Acetate additions were associated with highest CH, production.

Redox potential and pH showed concentration and composition dependent responses.



