46 research outputs found

    Intrinsic expression of host genes and intronic miRNAs in prostate carcinoma cells

    Get PDF
    Abstract Background Recent data show aberrant and altered expression of regulatory noncoding micro (mi) RNAs in prostate cancer (PCa). A large number of miRNAs are encoded in organized intronic clusters within many protein coding genes. While expression profiling studies of miRNAs are common place, little is known about the host gene and their resident miRNAs coordinated expression in PCa cells. Furthermore, whether expression of a subset of miRNAs is distinct in androgen-responsive and androgen-independent cells is not clear. Here we have examined the expression of mature miRNAs of miR 17–92, miR 106b-25 and miR 23b-24 clusters along with their host genes C13orf25, MCM7 and AMPO respectively in PCa cell lines. Results The expression profiling of miRNAs and host genes was performed in androgen-sensitive MDA PCa 2b and LNCaP as well as in androgen-refractory PC-3 and DU 145 cell culture models of PCa. No significant correlation between the miRNA expression and the intrinsic hormone-responsive property of PCa cells was observed. Androgen-sensitive MDA PCa 2b cells exhibited the highest level of expression of most miRNAs studied in this report. We found significant expression variations between host genes and their resident miRNAs. The expressions of C13orf25 and miR 17–92 cluster as well as MCM7 and miR 106b-25 cluster did not reveal statistically significant correlation, thus suggesting that host genes and resident miRNAs may be expressed independent of each other. Conclusion Our results suggest that miRNA expression profiles may not predict intrinsic hormone-sensitive environment of PCa cells. More importantly, our data indicate the possibility of additional novel mechanisms for intronic miRNA processing in PCa cells.</p

    Survival Analysis and Prognostic Factors of the Carcinoma of Gallbladder

    Get PDF
    Background: The present study aims to evaluate the survival status of patients with gallbladder cancer (GBC) and explore the prognostic factors for the improvement and preventions. Methods: The study consists of 176 patients with clinically diagnosed gallbladder cancer; the study was conducted between 2019 and 2021 registered at Kamala Nehru Memorial Cancer Hospital, Prayagraj, India. The survival rates were analyzed by the Kaplan-Meier method; survival rate difference was analyzed by log-rank test, prognosis factors; and hazard ratio for mortality outcomes was estimated using Cox regression method.Results: The overall median survival time of patients was 5 months with the 1-year, 2-year, and 3-year survival rates of 24.4%, 8.5%, and 4.5%, respectively. The 3-year survival for patients with jaundice was 2.9%, liver infiltration (4.2%), gall- stones (0.8%), and with advanced tumor grade (1.4%). Elderly GBC patients had lower survival rates (3.8%), while the 3-year overall survival for patients residing in urban areas dropped to zero. No patients in the tumor stage (T3/T4) and with distance metastasis stage survived in 3 years, while only 1.1% of patients with advanced nodal stage survived. On receiving surgery and radiation therapy, the 3-year survival rate increased to 19.5% and 35%, respectively. The results of multivariate analysis showed that urban region (HR = 1.568, p = 0.040), gallstone or not (1.571, p = 0.049), N stage (HR = 1.468, p = 0.029), and M stage (HR = 2.289, p \u3c 0.0001) were independent risk factors for prognosis, while surgery or not (HR = 0.573, p = 0.030) was the protective factor for the prognosis of GBC. Conclusion: The overall survival of GBC in the Gangetic belt is poor. The geographical region of patients, gallstones, and N and M stage was the risk factors for prognosis, while surgery or not was the protective factor for the pro

    A Boost for the Emerging Field of RNA Nanotechnology: Report on the First International Conference on RNA Nanotechnology

    Get PDF
    This Nano Focus article highlights recent advances in RNA nanotechnology as presented at the First International Conference of RNA Nanotechnology and Therapeutics, which took place in Cleveland, OH, USA (October 23-25, 2010) (http;//www.eng.uc.edu/nanomedidne/RNA2010/), chaired by Peixuan Guo and co-chaired by David Rueda and Scott Tenenbaum. The conference was the first of its kind to bring together more than 30 invited speakers in the frontier of RNA nanotechnology from France, Sweden, South Korea, China, and throughout the United States to discuss RNA nanotechnology and Its applications. It provided a platform for researchers from academia, government, and the pharmaceutical industry to share existing knowledge, vision, technology, and challenges in the field and promoted collaborations among researchers interested in advancing this emerging scientific discipline. The meeting covered a range of topics, including biophysical and single-molecule approaches for characterization of RNA nanostructures; structure studies on RNA nanoparticles by chemical or biochemical approaches, computation, prediction, and modeling of RNA nanoparticle structures; methods for the assembly of RNA nanoparticles; chemistry for RNA synthesis, conjugation, and labeling; and application of RNA nanoparticles in therapeutics. A special invited talk on the well-established principles of DNA nanotechnology was arranged to provide models for RNA nanotechnology. An Administrator from National Institutes of Health (NIH) National Cancer Institute (NCI) Alliance for Nanotechnology in Cancer discussed the current nanocancer research directions and future funding opportunities at NCl. As indicated by the feedback received from the invited speakers and the meeting participants, this meeting was extremely successful, exciting, and informative, covering many groundbreaking findings, pioneering ideas, and novel discoveries

    Functionally important structural elements of U12 snRNA

    Get PDF
    U12 snRNA is analogous to U2 snRNA of the U2-dependent spliceosome and is essential for the splicing of U12-dependent introns in metazoan cells. The essential region of U12 snRNA, which base pairs to the branch site of minor class introns is well characterized. However, other regions which are outside of the branch site base pairing region are not yet characterized and the requirement of these structures in U12-dependent splicing is not clear. U12 snRNA is predicted to form an intricate secondary structure containing several stem–loops and single-stranded regions. Using a previously characterized branch site genetic suppression assay, we generated second-site mutations in the suppressor U12 snRNA to investigate the in vivo requirement of structural elements in U12-dependent splicing. Our results show that stem–loop IIa is essential and required for in vivo splicing. Interestingly, an evolutionarily conserved stem–loop IIb is dispensable for splicing. We also show that stem–loop III, which binds to a p65 RNA binding protein of the U11-U12 di.snRNP complex, is essential for in vivo splicing. The data validate the existence of proposed stem–loops of U12 snRNA and provide experimental support for individual secondary structures

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Soil Enzymology

    No full text
    https://engagedscholarship.csuohio.edu/scibges_bks/1001/thumbnail.jp

    Soil Enzymology

    No full text
    https://engagedscholarship.csuohio.edu/scibges_bks/1001/thumbnail.jp

    Molecular Characterization of a Novel Androgen Receptor Transgene Responsive to MicroRNA Mediated Post-Transcriptional Control Exerted Via 3\u27-Untranslated Region

    No full text
    BACKGROUND. Androgen Receptor (AR) gene is associated with Prostate cancer (PCa) and hence targeting androgen-and AR-signaling axis remains the most promising primary therapeutic option to treat the disease. The AR mRNA has a 6.8 kb long 3\u27-untranslated region (UTR) which harbors several experimentally validated and numerous predicted miRNA binding sites. AR 3\u27-UTR is likely to positively or negatively regulate AR expression by interacting with miRNAs and possibly other trans-acting auxiliary factors including 3\u27-UTR RNA binding proteins. In this context, systematic understanding of the regulatory role of AR 3\u27-UTR in intrinsic post-transcriptional control of AR gene expression is of significance to understand AR related diseases including PCa. METHODS. In this study, we have constructed a heterologous reporter system in which Firefly luciferase and AR expression is experimentally influenced by the presence of AR 3\u27-UTR and its interactions with ectopically expressing miRNA. RESULTS. The expression of AR 3\u27-UTR containing reporters, including the Firefly luciferase and the AR open reading frame (ORF) were repressed by the overexpression of miR-488* mimics. In addition, the AR expressed from 3\u27-UTR containing expression vectors was fully functional in its transactivation function as determined by a prostate specific antigen (PSA) reporter assay. Further, by using confocal microscopy we also demonstrate that AR can translocate to the nucleus upon DHT activation confirming the functional ability of AR. CONCLUSIONS. AR transgenes with AR 3\u27-UTR fragments closely resemble the endogenous AR expression than any other previously characterized AR expression constructs. The 3\u27-UTR containing AR expression system is amiable to post-transcriptional manipulations including miRNA mediated repression of AR expression. This AR reporter system has the potential to be used in determining specificity of AR targeting miRNAs and their role in AR functional regulatory networks. (C) 2016Wiley Periodicals, Inc
    corecore