85 research outputs found

    Supremacy of nanoparticles in the therapy of chronic myelogenous leukemia

    Get PDF
    Background and purpose The reciprocal translocation of the ABL gene from chromosome 9 to chromosome 22 near the BCR gene gives rise to chronic myelogenous leukemia (CML). The translocation results in forming the Philadelphia chromosome (BCR-ABL) tyrosine kinase. CML results in an increase in the number of white blood cells and alteration in tyrosine kinase expression. CML prognosis includes three stages, namely chronic, accelerated, and blast. The diagnosis method involves a CT scan, biopsy, and complete blood count. However, due to certain disadvantages, early diagnosis of CML is not possible by traditional methods. Nanotechnology offers many advantages in diagnosing and treating cancer. Experimental approach We searched PubMed, Scopus and Google Scholar using the keywords Philadelphia chromosome, bionanotechnology, tyrosine kinase pathway, half-life, passive targeting, and organic and inorganic nanoparticles. The relevant papers and the classical papers in this field were selected to write about in this review. Key results The sensitivity and specificity of an assay can be improved by nanoparticles. Utilizing this property, peptides, antibodies, aptamers, etc., in the form of nanoparticles, can be used to detect cancer at a much earlier stage. The half-life of the drug is also increased by nanoformulation. The nanoparticle-coated drugs can easily escape from the immune system. Conclusion Depending on their type, nanoparticles can be categorized into organic, inorganic and hybrid. Each type has its advantages. Organic nanoparticles have good biocompatibility, inorganic nanoparticles increase the half-life of the drugs. In this review, we highlight the nanoparticles involved in treating CML

    Infections associated with SARS-CoV-2 exploited via nanoformulated photodynamic therapy

    Get PDF
    Background and purpose The pandemic of COVID-19 has highlighted the need for managing infectious diseases, which spreads by airborne transmission leading to serious health, social, and economic issues. SARS-CoV-2 is an enveloped virus with a 60–140 nm diameter and particle-like features, which majorly accounts for this disease. Expanding diagnostic capabilities, developing safe vaccinations with long-lasting immunity, and formulating effective medications are the strategies to be investigated. Experimental approach For the literature search, electronic databases such as Scopus, Google Scholar, MEDLINE, Embase, PubMed, and Web of Science were used as the source. Search terms like \u27Nano-mediated PDT,\u27 \u27PDT for SARS-CoV-2\u27, and \u27Nanotechnology in treatment for SARS-CoV-2\u27 were used. Out of 275 initially selected articles, 198 were chosen after the abstract screening. During the full-text screening, 80 papers were excluded, and 18 were eliminated during data extraction. Preference was given to articles published from 2018 onwards, but a few older references were cited for their valuable information. Key results Synthetic nanoparticles (NPs) have a close structural resemblance to viruses and interact greatly with their proteins due to their similarities in the configurations. NPs had previously been reported to be effective against a variety of viruses. In this way, with nanoparticles, photodynamic therapy (PDT) can be a viable alternative to antibiotics in fighting against microbial infections. The protocol of PDT includes the activation of photosensitizers using specific light to destroy microorganisms in the presence of oxygen, treating several respiratory diseases. Conclusion The use of PDT in treating COVID-19 requires intensive investigations, which has been reviewed in this manuscript, including a computational approach to formulating effective photosensitizers

    Smart farming approach using nanotechnology: an inevitable role in the application of pesticides

    Get PDF
    Food and crops are sourced primarily from agriculture, and due to the enormous growth in population, agricultural goods are in great demand, while farmland is being developed for residences. Therefore, certain chemicals, like pesticides, are being overused and have become unavoidable to increase crop productivity and storage. Excessive release of pesticides into the environment and food chain may pose a health risk. Food and agricultural products need routine analyses to monitor the level of pesticide residuals. As pesticide detection techniques are labor-intensive and require highly qualified professionals, an alternative technique must be developed, such as analytical nanotechnology. The most commonly used nanomaterials for pesticide delivery, enrichment, degradation, detection, and removal are metals, clays, polymers, and lipids. In colorimetric analysis of pesticides, metal nanoparticles are widely used which are quick, easy, and do not require any sample preparation. This manuscript compiles the latest research on nanotechnology in pesticide formulation and detection for smart farming

    Beneficial effects of bioinspired silver nanoparticles on zebrafish embryos including a gene expression study

    Get PDF
    Background and purpose: Many sectors use nanoparticles and dispose of them in the aquatic environment without deciding the fate of these particles. Experimental approach: To identify a benign species of nanoparticles which can cause minimum harm to the aquatic environment, a comparative study was done with chemically synthesized silver nanoparticles (AgNPs) and green tea mediated synthesis (GT/AgNP) in both in vitro using human alveolar cancer cell line (A549) and normal cell line (L132), and in in vivo with zebrafish embryos. Key results: The in vitro studies revealed that GT/AgNPs were less toxic to normal cells than cancer cells. The GT/AgNPs showed high biocompatibility for zebrafish embryos monitored microscopically for their developmental stages and by cumulative hatchability studies. The reduced hatchability found in the AgNPs-treated group was correlated by differential gene expression of zebrafish hatching enzymes (ZHE) (ZHE1 and ZHE2). Conclusion: The results indicated that nanoparticles can affect the hatching of zebrafish embryos and elicit toxicity at the gene level.

    Antioxidant Effects of the Ethanol Extract from Flower of Camellia japonica via Scavenging of Reactive Oxygen Species and Induction of Antioxidant Enzymes

    Get PDF
    The aim of this study was to investigate the antioxidant properties of the ethanol extract of the flower of Camellia japonica (Camellia extract). Camellia extract exhibited 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) scavenging activity in human HaCaT keratinocytes. In addition, Camellia extract scavenged superoxide anion generated by xanthine/xanthine oxidase and hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2) in a cell-free system, which was detected by electron spin resonance spectrometry. Furthermore, Camellia extract increased the protein expressions and activity of cellular antioxidant enzymes, such as superoxide dismutase, catalase and glutathione peroxidase. These results suggest that Camellia extract exhibits antioxidant properties by scavenging ROS and enhancing antioxidant enzymes. Camellia extract contained quercetin, quercetin-3-O-glucoside, quercitrin and kaempferol, which are antioxidant compounds

    MicroRNA-31 Regulates Chemosensitivity in Malignant Pleural Mesothelioma

    Get PDF
    YesMalignant pleural mesothelioma (MPM) is associated with an extremely poor prognosis, and most patients initially are or rapidly become unresponsive to platinum-based chemotherapy. MicroRNA-31 (miR-31) is encoded on a genomic fragile site, 9p21.3, which is reportedly lost in many MPM tumors. Based on previous findings in a variety of other cancers, we hypothesized that miR-31 alters chemosensitivity and that miR-31 reconstitution may influence sensitivity to chemotherapeutics in MPM. Reintroduction of miR-31 into miR-31 null NCI-H2452 cells significantly enhanced clonogenic resistance to cisplatin and carboplatin. Although miR-31 re-expression increased chemoresistance, paradoxically, a higher relative intracellular accumulation of platinum was detected. This was coupled to a significantly decreased intranuclear concentration of platinum. Linked with a downregulation of OCT1, a bipotential transcriptional regulator with multiple miR-31 target binding sites, we subsequently identified an indirect miR-31-mediated upregulation of ABCB9, a transporter associated with drug accumulation in lysosomes, and increased uptake of platinum to lysosomes. However, when overexpressed directly, ABCB9 promoted cellular chemosensitivity, suggesting that miR-31 promotes chemoresistance largely via an ABCB9-independent mechanism. Overall, our data suggest that miR-31 loss from MPM tumors promotes chemosensitivity and may be prognostically beneficial in the context of therapeutic sensitivity

    Controlled drug delivery systems for improved efficacy and bioavailability of flavonoids

    No full text
    Purpose In past decades, experiments have been done to find the properties of plant polyphenols and their protective role in various diseases. In the present study, a brief review has been done on flavonoids’ protective role in different diseases and controlled drug delivery systems that can be feasible for improving flavonoids’ bioavailability as well as their efficacy in the biological system. Design/methodology/approach Keywords searched in PubMed, and Google Scholar are “Flavones and cardiovascular diseases, flavones and neurodegenerative diseases, isoflavones and neurodegenerative diseases, Flavonoids and ageing, Flavonoids and diseases, total flavonoid content in vegetables, total flavonoid content in fruits, controlled drug delivery system and flavonoids” and the significant recent articles are selected for writing this review. Findings Flavonoids are active components present in plant products that have been found to exert several health benefits, especially in retarding the deleterious effects of CVD, cancer, ageing, diabetes, and neurodegenerative diseases. The different clinical studies have also supported the above notions, and in this commentary, we have highlighted some important findings in the field of flavonoid research. Even though it has various bioactive efficacy, most flavonoids have less bioavailability, requiring controlled drug delivery methods that can also improve flavonoids' bioavailability and stability. pH-, electro-, infrared radiation-, redox- responsive methods of controlled drug release systems are some of the valuable techniques for improving the rate of drug release and bioavailability at the targeted site. Research limitations/implications Research is warranted in this field for improving and developing various materials that can be utilized in the formation of scaffolds/polymers that improves drug loading and controlled drug release properties at the targeted site. Originality/value This review will help the readers to design new strategies in flavonoid research with the help of controlled drug release methods for increased bioavailability and rate of drug release/ controlled drug release

    Nanoencapsulated Myricetin to Improve Antioxidant Activity and Bioavailability: A Study on Zebrafish Embryos

    No full text
    Flavonoids are natural polyphenolic compounds that mainly possess antioxidant properties due to more hydroxyl groups in their structure and play an important role in combatting many diseases. Myricetin is a flavonoid found in grapes, green tea, fruits, and vegetables and is not only an antioxidant but also is a pro-oxidant. Myricetin is sparingly soluble in water and restricts its properties due to low bioavailability. The present study reports the liposomal nanoformulations of myricetin to improve its bioavailability with reduced pro-oxidant activity. The nanoformulated myricetin was characterized using different photophysical tools, such as dynamic light scattering (DLS), zeta potential, and scanning electron microscopy (SEM). The effect of nanoencapsulated myricetin on the developing zebrafish embryo was studied in terms of microscopic observations, cumulative hatchability, and antioxidant activities, such as catalase, glutathione peroxidase, and superoxide dismutase, after treating the zebrafish embryo with standard oxidant hydrogen peroxide. The results obtained from the cumulative hatchability, developmental studies, and antioxidant assays indicated that the liposomal nanoformulation of myricetin had enhanced antioxidant activity, leading to defense against oxidative stress. The formulation was highly biocompatible, as evidenced by the cumulative hatching studies as well as microscopic observations. The positive effects of liposomal nanoformulation on zebrafish embryos can open an avenue for other researchers to carry out further related research and to check its activities in clinical studies and developmental studies

    Intricate subcellular journey of nanoparticles to the enigmatic domains of endoplasmic reticulum

    No full text
    AbstractIt is evident that site-specific systemic drug delivery can reduce side effects, systemic toxicity, and minimal dosage requirements predominantly by delivering drugs to particular pathological sites, cells, and even subcellular structures. The endoplasmic reticulum (ER) and associated cell organelles play a vital role in several essential cellular functions and activities, such as the synthesis of lipids, steroids, membrane-associated proteins along with intracellular transport, signaling of Ca2+, and specific response to stress. Therefore, the dysfunction of ER is correlated with numerous diseases where cancer, neurodegenerative disorders, diabetes mellitus, hepatic disorder, etc., are very common. To achieve satisfactory therapeutic results in certain diseases, it is essential to engineer delivery systems that can effectively enter the cells and target ER. Nanoparticles are highly biocompatible, contain a variety of cargos or payloads, and can be modified in a pliable manner to achieve therapeutic effectiveness at the subcellular level when delivered to specific organelles. Passive targeting drug delivery vehicles, or active targeting drug delivery systems, reduce the nonselective accumulation of drugs while reducing side effects by modifying them with small molecular compounds, antibodies, polypeptides, or isolated bio-membranes. The targeting of ER and closely associated organelles in cells using nanoparticles, however, is still unsymmetrically understood. Therefore, here we summarized the pathophysiological prospect of ER stress, involvement of ER and mitochondrial response, disease related to ER dysfunctions, essential therapeutics, and nanoenabled modulation of their delivery to optimize therapy
    corecore