96 research outputs found

    Painting dark matter halos with galaxies in mock samples for future surveys

    Get PDF
    In this thesis we present a completely empirical workflow that produces, from the outputs of a dark matter cosmological simulation, a galaxy mock catalog which is able to reproduce with accuracy a number of physical properties of galaxies such as stellar masses, star-formation rates, observed photometry, emission lines and sizes. The main goal of this thesis is to provide to the scientific community a galaxy mock catalog useful, as mentioned above, to make predictions for future surveys, to plan future observations, to understand and minimize uncertainties and to study systematics and selection effects

    Quiescent galaxies at z2.5z \gtrsim 2.5: observations vs. models

    Get PDF
    The presence of massive quiescent galaxies at high redshifts is still a challenge for most models of galaxy formation. The aim of this work is to compare the observed number density and properties of these galaxies with the predictions of state-of-the-art models. The sample of massive quiescent galaxies has been selected from the COSMOS2015 photometric catalogue with zphot2.5z_{\rm phot}\geq 2.5, log(M/M)10.5\log (M_*/M_\odot)\geq 10.5 and log(sSFR[yr1])11\log(\mathrm{sSFR\,[yr^{-1}]})\le -11. The photometric SEDs of the selected galaxies have been thoroughly analyzed based on different stellar population synthesis models. The final sample includes only those galaxies qualified as quiescent in all SED fitting runs. The observed properties have been compared to theoretical models: the number density of quiescent galaxies with 10.5log(M/M)<10.810.5 \leq \log(M_*/M_\odot) < 10.8 is reproduced by some models, although there is a large scatter in their predictions. Instead, very massive log(M/M)10.8\log(M_{*}/M_{\odot}) \geq 10.8 are underpredicted by most of the current models of galaxy formation: some of them, built on the CARNage simulation, are consistent with data up to z4z \sim 4, while at higher redshifts the volume of the considered simulation is too small to find such rare objects. Simulated galaxies which match the observed properties in the sSFRM\mathrm{sSFR}-M_* plane at z3z\sim 3 have been analyzed by reconstructing their evolutionary paths: their merger trees suggest that AGN feedback could be the key process allowing for a rapid quenching of the star formation at z4z\gtrsim 4 and that its treatment should be improved in models.Comment: Accepted for publication in ApJL, 9 pages, 6 figure

    Aceruloplasminemia: A Severe Neurodegenerative Disorder Deserving an Early Diagnosis

    Get PDF
    Aceruloplasminemia (ACP) is a rare, adult-onset, autosomal recessive disorder, characterized by systemic iron overload due to mutations in the Ceruloplasmin gene (CP), which in turn lead to absence or strong reduction of CP activity. CP is a ferroxidase that plays a key role in iron export from various cells, especially in the brain, where it maintains the appropriate iron homeostasis with neuroprotective effects. Brain iron accumulation makes ACP unique among systemic iron overload syndromes, e.g., various types of genetic hemochromatosis. The main clinical features of fully expressed ACP include diabetes, retinopathy, liver disease, and progressive neurological symptoms reflecting iron deposition in target organs. However, biochemical signs of the disease, namely a mild anemia mimicking iron deficiency anemia because of microcytosis and low transferrin saturation, but with "paradoxical" hyperferritinemia, usually precedes the onset of clinical symptoms of many years and sometimes decades. Prompt diagnosis and therapy are crucial to prevent neurological complications of the disease, as they are usually irreversible once established. In this mini-review we discuss some major issues about this rare disorder, pointing out the early clues to the right diagnosis, instrumental to reduce significant disability burden of affected patients

    Massive and old quiescent galaxies at high redshift

    Get PDF
    Massive quiescent galaxies at high redshift can shed light on the processes of galaxy mass assembly and quenching of the star formation at early epochs. We present observer-frame color-color diagrams designed to identify candidate quiescent galaxies from z=2.5 up to the highest redshifts, that can be then be selected for spectroscopic follow-up observations. The application to the COSMOS2015 catalog shows that, after refining the selection with SED fitting, the number of massive old quiescent galaxies exceeds the forecast of state-of-the-art semi-analytic models, pointing out the need of an improvement of the implemented quenching mechanisms at high redshifts.Comment: Astronomy & Astrophysics, accepted; Matching version in press; 21 pages, 13 figure

    The stellar-to-halo mass relation over the past 12 Gyr

    Get PDF
    Understanding how galaxy properties are linked to the dark matter halos they reside in, and how they co-evolve is a powerful tool to constrain the processes related to galaxy formation. The stellar-to-halo mass relation (SHMR) and its evolution over the history of the Universe provides insights on galaxy formation models and allows to assign galaxy masses to halos in N-body dark matter simulations. We use a statistical approach to link the observed galaxy stellar mass functions on the COSMOS field to dark matter halo mass functions from the DUSTGRAIN simulation and from a theoretical parametrization from z=0 to z=4. We also propose an empirical model to describe the evolution of the stellar-to-halo mass relation as a function of redshift. We calculate the star-formation efficiency (SFE) of galaxies and compare results with previous works and semi-analytical models.Comment: accepted for publication in A&A, matching version in pres

    Hyperferritinemia and diagnosis of type 1 Gaucher disease

    Get PDF
    Given the difficulties in diagnosis of type 1 GD in adults because of disease heterogeneity and lack of awareness, appropriate diagnostic algorithms or flow-charts starting from non-specific findings may help. Case reports help to establish the usefulness of our proposed flowchart in patients presenting with \u201cunexplained hyperferritinemia\u201d

    Red Blood Cell Morphologic Abnormalities in Patients Hospitalized for COVID-19

    Get PDF
    Peripheral blood smear is a simple laboratory tool, which remains of invaluable help for diagnosing primary and secondary abnormalities of blood cells despite advances in automated and molecular techniques. Red blood cells (RBCs) abnormalities are known to occur in many viral infections, typically in the form of mild normo-microcytic anemia. While several hematological alterations at automated complete blood count (including neutrophilia, lymphopenia, and increased red cell distribution width—RDW) have been consistently associated with severity of COVID-19, there is scarce information on RBCs morphological abnormalities, mainly as case-reports or small series of patients, which are hardly comparable due to heterogeneity in sampling times and definition of illness severity. We report here a systematic evaluation of RBCs morphology at peripheral blood smear in COVID-19 patients within the first 72 h from hospital admission. One hundred and fifteen patients were included, with detailed collection of other clinical variables and follow-up. A certain degree of abnormalities in RBCs morphology was observed in 75 (65%) patients. Heterogenous alterations were noted, with spiculated cells being the more frequent morphology. The group with &gt;10% RBCs abnormalities had more consistent lymphopenia and thrombocytopenia compared to those without abnormalities or &lt;10% RBCs abnormalities (p &lt; 0.018, and p &lt; 0.021, respectively), thus underpinning a possible association with an overall more sustained immune-inflammatory “stress” hematopoiesis. Follow-up analysis showed a different mortality rate across groups, with the highest rate in those with more frequent RBCs morphological alterations compared to those with &lt;10% or no abnormalities (41.9%, vs. 20.5%, vs. 12.5%, respectively, p = 0.012). Despite the inherent limitations of such simple association, our results point out towards further studies on erythropoiesis alterations in the pathophysiology of COVID-19

    IL-17A impairs host tolerance during airway chronic infection by Pseudomonas aeruginosa

    Get PDF
    Resistance and tolerance mechanisms participate to the interplay between host and pathogens. IL-17-mediated response has been shown to be crucial for host resistance to respiratory infections, whereas its role in host tolerance during chronic airway colonization is still unclear. Here, we investigated whether IL-17-mediated response modulates mechanisms of host tolerance during airways chronic infection by P. aeruginosa. First, we found that IL-17A levels were sustained in mice at both early and advanced stages of P. aeruginosa chronic infection and confirmed these observations in human respiratory samples from cystic fibrosis patients infected by P. aeruginosa. Using IL-17a(-/-) or IL-17ra(-/-) mice, we found that the deficiency of IL-17A/IL-17RA axis was associated with: i) increased incidence of chronic infection and bacterial burden, indicating its role in the host resistance to P. aeruginosa; ii) reduced cytokine levels (KC), tissue innate immune cells and markers of tissue damage (pro-MMP-9, elastin degradation, TGF-β1), proving alteration of host tolerance. Blockade of IL-17A activity by a monoclonal antibody, started when chronic infection is established, did not alter host resistance but increased tolerance. In conclusion, this study identifies IL-17-mediated response as a negative regulator of host tolerance during P. aeruginosa chronic airway infection

    Weakness of accelerator bounds on electron superluminality without a preferred frame

    Full text link
    The reference laboratory bounds on superluminality of the electron are obtained from the absence of in-vacuo Cherenkov processes and the determinations of synchrotron radiated power for LEP electrons. It is usually assumed that these analyses establish the validity of a standard special-relativistic description of the electron with accuracy of at least a few parts in 101410^{14}, and in particular this is used to exclude electron superluminality with such an accuracy. We observe that these bounds rely crucially on the availability of a preferred frame. In-vacuo-Cherenkov processes are automatically forbidden in any theory with "deformed Lorentz symmetry", relativistic theories that, while different from Special Relativity, preserve the relativity of inertial frames. Determinations of the synchrotron radiated power can be used to constrain the possibility of Lorentz-symmetry deformation, but provide rather weak bounds, which in particular for electron superluminality we establish to afford us no more constraining power than for an accuracy of a few parts in 10410^4. We argue that this observation can have only a limited role in the ongoing effort of analysis of the anomaly tentatively reported by the OPERA collaboration, but we stress that it could provide a valuable case study for assessing the limitations of "indirect" tests of fundamental laws of physics.Comment: LaTex, 6 page

    Geographical heterogeneity of clinical and serological phenotypes of systemic sclerosis observed at tertiary referral centres. The experience of the Italian SIR-SPRING registry and review of the world literature

    Get PDF
    Introduction: Systemic sclerosis (SSc) is characterized by a complex etiopathogenesis encompassing both host genetic and environmental -infectious/toxic- factors responsible for altered fibrogenesis and diffuse microangiopathy. A wide spectrum of clinical phenotypes may be observed in patients' populations from different geographical areas. We investigated the prevalence of specific clinical and serological phenotypes in patients with definite SSc enrolled at tertiary referral centres in different Italian geographical macro-areas. The observed findings were compared with those reported in the world literature.Materials and methods: The clinical features of 1538 patients (161 M, 10.5%; mean age 59.8 +/- 26.9 yrs.; mean disease duration 8.9 +/- 7.7 yrs) with definite SSc recruited in 38 tertiary referral centres of the SPRING (Systemic sclerosis Progression INvestiGation Group) registry promoted by Italian Society of Rheumatology (SIR) were obtained and clustered according to Italian geographical macroareas.Results: Patients living in Southern Italy were characterized by more severe clinical and/or serological SSc phenotypes compared to those in Northern and Central Italy; namely, they show increased percentages of diffuse cutaneous SSc, digital ulcers, sicca syndrome, muscle involvement, arthritis, cardiopulmonary symptoms, interstitial lung involvement at HRCT, as well increased prevalence of serum anti-Scl70 autoantibodies. In the same SSc population immunusppressive drugs were frequently employed. The review of the literature underlined the geographical heterogeneity of SSc phenotypes, even if the observed findings are scarcely comparable due to the variability of methodological approaches.Conclusion: The phenotypical differences among SSc patients' subgroups from Italian macro-areas might be correlated to genetic/environmental co-factors, and possibly to a not equally distributed national network of information and healthcare facilities
    corecore