122 research outputs found

    Kisspeptin-mediated improvement of sensitivity to BRAF inhibitors in vemurafenib-resistant melanoma cells

    Get PDF
    Metastatic dissemination is still one of the major causes of death of melanoma’s patients. KiSS1 is a metastasis suppressor originally identified in melanoma cells, known to play an important physiological role in mammals’ development and puberty. It has been previously shown that expression of KiSS1 could be increased in lung cancer cells using epigenetic agents, and that KiSS1 could have a pro-apoptotic action in combination with cisplatin. Thus, the aim of the present study was to examine in human melanoma vemurafenib sensitive- and -resistant BRAF mutant cells characterized by different mutational profiles and KiSS1, KiSS1 receptor and KiSS1 drug-induced release, if peptides derived from KiSS1 cleavage, i.e., kisspeptin 54, could increase the sensitivity to vemurafenib of human melanoma, using cellular, molecular and biochemical approaches. We found that kisspeptin 54 increases vemurafenib pro-apoptotic activity in a statistically significant manner, also in drug resistant cellular models. The efficacy of the combination appears to reflect the intrinsic susceptibility of each cell line to PLX4032-induced apoptosis, together with the different mutational profile as well as perturbation of proteins regulating the apoptotic pathway, The results presented here highlight the possibility to exploit KiSS1 to modulate the apoptotic response to therapeutically relevant agents, suggesting a multitasking function of this metastasis suppressor

    Discovery and development of novel salicylate synthase (MbtI) furanic inhibitors as antitubercular agents

    Get PDF
    We report on the virtual screening, synthesis, and biological evaluation of new furan derivatives targeting Mycobacterium tuberculosis salicylate synthase (MbtI). A receptor-based virtual screening procedure was applied to screen the Enamine database, identifying two compounds, I and III, endowed with a good enzyme inhibitory activity. Considering the most active compound I as starting point for the development of novel MbtI inhibitors, we obtained new derivatives based on the furan scaffold. Among the SAR performed on this class, compound 1a emerged as the most potent MbtI inhibitor reported to date (Ki = 5.3 μM). Moreover, compound 1a showed a promising antimycobacterial activity (MIC99 = 156 μM), which is conceivably related to mycobactin biosynthesis inhibition

    Blood serum amyloid A as potential biomarker of pembrolizumab efficacy for patients affected by advanced non-small cell lung cancer overexpressing PD-L1: results of the exploratory "FoRECATT" study

    Get PDF
    Background: Identifying the patients who may benefit the most from immune checkpoints inhibitors remains a great challenge for clinicians. Here we investigate on blood serum amyloid A (SAA) as biomarker of response to upfront pembrolizumab in patients with advanced non-small-cell lung cancer (NSCLC). Methods: Patients with PD-L1 ≥ 50% receiving upfront pembrolizumab (P cohort) and with PD-L1 0-49% treated with chemotherapy (CT cohort) were evaluated for blood SAA and radiological response at baseline and every 9 weeks. Endpoints were response rate (RR) according to RECIST1.1, progression-free (PFS) and overall survival (OS). The most accurate SAA cut-off to predict response was established with ROC analysis in the P cohort. Results: In the P Cohort (n = 42), the overall RR was 38%. After a median follow-up of 18.5 months (mo), baseline SAA ≤ the ROC-derived cut-off (29.9 mg/L; n = 28/42.67%) was significantly associated with higher RR (53.6 versus 7.1%; OR15, 95% CI 1.72-130.7, p = 0.009), longer PFS (17.4 versus 2.1 mo; p < 0.0001) and OS (not reached versus 7.2mo; p < 0.0001) compared with SAA > 29.9 mg/L. In multivariate analysis, low SAA positively affects PFS (p = 0.001) and OS (p = 0.048) irrespective of ECOG PS, number of metastatic sites and pleural effusion. SAA monitoring (n = 40) was also significantly associated with survival endpoints: median PFS 17.4 versus 2.1 mo and median OS not reached versus 7.2 mo when SAA remained low (n = 14) and high (n = 12), respectively. In the CT Cohort (n = 30), RR was not affected by SAA level (p > 0.05) while low SAA at baseline (n = 17) was associated with better PFS (HR 0.38, 95% CI 0.16-0.90, p = 0.006) and OS (HR 0.25, 95% CI 0.09-0.67, p < 0.001). Conclusion: Low SAA predicts good survival outcomes irrespective of treatment for advanced NSCLC patients and higher likelihood of response to upfront pembrolizumab only. The strong prognostic value might be exploited to easily identify patients most likely to benefit from immunotherapy. A further study (FoRECATT-2) is ongoing to confirm results in a larger sample size and to investigate the effect of SAA on immune response in vitro assays

    Sulfonates-PMMA nanoparticles conjugates: A versatile system for multimodal application

    Get PDF
    a b s t r a c t We report herein the viability of a novel nanoparticles (NPs) conjugated system, namely the attachment, based on ionic and hydrophobic interactions, of different sulfonated organic salts to positively charged poly(methylmethacrylate) (PMMA)-based core-shell nanoparticles (EA0) having an high density of ammonium groups on their shells. In this context three different applications of the sulfonates@EA0 systems have been described. In detail, their ability as cytotoxic drugs and pro-drugs carriers was evaluated in vitro on NCI-H460 cell line and in vivo against human ovarian carcinoma IGROV-1 cells. Besides, 8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt (HPTS) was chosen for NPs loading, and its internalization as bioimaging probe was evaluated on Hep G2 cells. Overall, the available data support the interest for these PMMA NPs@sulfonates systems as a promising formulation for theranostic applications. In vivo biological data strongly support the potential value of these core-shell NPs as delivery system for negatively charged drugs or biologically active molecules. Additionally, we have demonstrated the ability of these PMMA core-shell nanoparticles to act as efficient carriers of fluorophores. In principle, thanks to the high PMMA NPs external charge density, sequential and very easy post-loading of different sulfonates is achievable, thus allowing the preparation of nanocarriers either with bi-modal drug delivery behaviour or as theranostic systems

    Characteristics and patterns of care of endometrial cancer before and during COVID-19 pandemic

    Get PDF
    Objective: Coronavirus disease 2019 (COVID-19) outbreak has correlated with the disruption of screening activities and diagnostic assessments. Endometrial cancer (EC) is one of the most common gynecological malignancies and it is often detected at an early stage, because it frequently produces symptoms. Here, we aim to investigate the impact of COVID-19 outbreak on patterns of presentation and treatment of EC patients. Methods: This is a retrospective study involving 54 centers in Italy. We evaluated patterns of presentation and treatment of EC patients before (period 1: March 1, 2019 to February 29, 2020) and during (period 2: April 1, 2020 to March 31, 2021) the COVID-19 outbreak. Results: Medical records of 5,164 EC patients have been retrieved: 2,718 and 2,446 women treated in period 1 and period 2, respectively. Surgery was the mainstay of treatment in both periods (p=0.356). Nodal assessment was omitted in 689 (27.3%) and 484 (21.2%) patients treated in period 1 and 2, respectively (p<0.001). While, the prevalence of patients undergoing sentinel node mapping (with or without backup lymphadenectomy) has increased during the COVID-19 pandemic (46.7% in period 1 vs. 52.8% in period 2; p<0.001). Overall, 1,280 (50.4%) and 1,021 (44.7%) patients had no adjuvant therapy in period 1 and 2, respectively (p<0.001). Adjuvant therapy use has increased during COVID-19 pandemic (p<0.001). Conclusion: Our data suggest that the COVID-19 pandemic had a significant impact on the characteristics and patterns of care of EC patients. These findings highlight the need to implement healthcare services during the pandemic

    Assessing Trustworthy AI in times of COVID-19. Deep Learning for predicting a multi-regional score conveying the degree of lung compromise in COVID-19 patients

    Get PDF
    Abstract—The paper's main contributions are twofold: to demonstrate how to apply the general European Union’s High-Level Expert Group’s (EU HLEG) guidelines for trustworthy AI in practice for the domain of healthcare; and to investigate the research question of what does “trustworthy AI” mean at the time of the COVID-19 pandemic. To this end, we present the results of a post-hoc self-assessment to evaluate the trustworthiness of an AI system for predicting a multi-regional score conveying the degree of lung compromise in COVID-19 patients, developed and verified by an interdisciplinary team with members from academia, public hospitals, and industry in time of pandemic. The AI system aims to help radiologists to estimate and communicate the severity of damage in a patient’s lung from Chest X-rays. It has been experimentally deployed in the radiology department of the ASST Spedali Civili clinic in Brescia (Italy) since December 2020 during pandemic time. The methodology we have applied for our post-hoc assessment, called Z-Inspection®, uses socio-technical scenarios to identify ethical, technical and domain-specific issues in the use of the AI system in the context of the pandemic.</p
    • …
    corecore