62 research outputs found
Recommended from our members
The unfolded protein response in neurodegenerative disorders - therapeutic modulation of the PERK pathway.
The unfolded protein response (UPR) is a highly conserved protein quality control mechanism, activated in response to Endoplasmic Reticulum (ER) stress. Signalling is mediated through three branches, PERK, IRE1, and ATF6, respectively, that together provide a coordinated response that contributes to overcoming disrupted proteostasis. PERK branch activation predominantly causes a rapid reduction in global rates of translation, while the IRE1 and ATF6 branch signalling induce a transcriptional response resulting in expression of chaperones and components of the protein degradation machinery. Protein misfolding neurodegenerative diseases show disruption of proteostasis as a biochemical feature. In the brains of animal models of disease and in human post mortem tissue from many of these disorders, markers of UPR induction, particularly, the PERK pathway can be observed in close association with disease progression. Recent research has revealed dysregulated UPR signalling to be a major pathogenic mechanism in neurodegeneration, and that genetic and pharmacological modulation of the PERK pathway results in potent neuroprotection. Targeting aberrant UPR signalling is the focus of new therapeutic strategies, which importantly could be beneficial across the broad spectrum of neurodegenerative diseases
Therapy for prion diseases Insights from the use of RNA interference
Insights into the molecular basis and the temporal evolution of neurotoxicity in prion disease are increasing, and recent work in mice leads to new avenues for targeting treatment of these disorders. Using lentivirally mediated RNA interference (RNAi) against native prion protein (PrP), White et al. report the first therapeutic intervention that results in neuronal rescue, prevents symptoms and increases survival in mice with established prion disease.(1) Both the target and the timing of treatment here are crucial to the effectiveness of this strategy: the formation of the neurotoxic prion agent is prevented at a point when diseased neurons can still be saved from death. But the data also give new insights into the timing of treatment in the context of the pattern of spread of prion infection throughout the brain, with implications for developing the most effective treatments
Prions: generation and spread versus neurotoxicity.
Neurodegenerative diseases are characterized by the aggregation of misfolded proteins in the brain. Among these disorders are the prion diseases, which are transmissible, and in which the misfolded proteins ("prions") are also the infectious agent. Increasingly, it appears that misfolded proteins in Alzheimer and Parkinson diseases and the tauopathies also propagate in a "prion-like" manner. However, the association between prion formation, spread, and neurotoxicity is not clear. Recently, we showed that in prion disease, protein misfolding leads to neurodegeneration through dysregulation of generic proteostatic mechanisms, specifically, the unfolded protein response. Genetic and pharmacological manipulation of the unfolded protein response was neuroprotective despite continuing prion replication, hence dissociating this from neurotoxicity. The data have clear implications for treatment across the spectrum of these disorders, targeting pathogenic processes downstream of protein misfolding
ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo
Neurodegenerative diseases are increasingly prevalent in the aging population, yet no disease-modifying treatments are currently available. Increasing the expression of the cold-shock protein RBM3 through therapeutic hypothermia is remarkably neuroprotective. However, systemic cooling poses a health risk, strongly limiting its clinical application. Selective upregulation of RBM3 at normothermia thus holds immense therapeutic potential. Here we identify a poison exon within the RBM3 gene that is solely responsible for its cold-induced expression. Genetic removal or antisense oligonucleotide (ASO)-mediated manipulation of this exon yields high RBM3 levels independent of cooling. Notably, a single administration of ASO to exclude the poison exon, using FDA-approved chemistry, results in long-lasting increased RBM3 expression in mouse brains. In prion-diseased mice, this treatment leads to remarkable neuroprotection, with prevention of neuronal loss and spongiosis despite high levels of disease-associated prion protein. Our promising results in mice support the possibility that RBM3-inducing ASOs might also deliver neuroprotection in humans in conditions ranging from acute brain injury to Alzheimer's disease
Cooling-induced SUMOylation of EXOSC10 down-regulates ribosome biogenesis.
The RNA exosome is essential for 3? processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells. Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress. Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and show that overexpression of SUMO1 alone is sufficient to suppress EXOSC10 abundance. Reducing EXOSC10 expression by RNAi in human cells correlates with the 3? preribosomal RNA processing defects seen in the cold as well as reducing the 40S:60S ratio, a previously uncharacterized consequence of EXOSC10 suppression. Together, this work illustrates that EXOSC10 can be modified by SUMOylation and identifies a physiological stress where this regulation is prevalent both in vitro and in vivo
Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability.
Nitric oxide (NO) regulates neuronal function and thus is critical for tuning neuronal communication. Mechanisms by which NO modulates protein function and interaction include posttranslational modifications (PTMs) such as S-nitrosylation. Importantly, cross signaling between S-nitrosylation and prenylation can have major regulatory potential. However, the exact protein targets and resulting changes in function remain elusive. Here, we interrogated the role of NO-dependent PTMs and farnesylation in synaptic transmission. We found that NO compromises synaptic function at the Drosophila neuromuscular junction (NMJ) in a cGMP-independent manner. NO suppressed release and reduced the size of available vesicle pools, which was reversed by glutathione (GSH) and occluded by genetic up-regulation of GSH-generating and de-nitrosylating glutamate-cysteine-ligase and S-nitroso-glutathione reductase activities. Enhanced nitrergic activity led to S-nitrosylation of the fusion-clamp protein complexin (cpx) and altered its membrane association and interactions with active zone (AZ) and soluble N-ethyl-maleimide-sensitive fusion protein Attachment Protein Receptor (SNARE) proteins. Furthermore, genetic and pharmacological suppression of farnesylation and a nitrosylation mimetic mutant of cpx induced identical physiological and localization phenotypes as caused by NO. Together, our data provide evidence for a novel physiological nitrergic molecular switch involving S-nitrosylation, which reversibly suppresses farnesylation and thereby enhances the net-clamping function of cpx. These data illustrate a new mechanistic signaling pathway by which regulation of farnesylation can fine-tune synaptic release
Control of translation elongation in health and disease.
Regulation of protein synthesis makes a major contribution to post-transcriptional control pathways. During disease, or under stress, cells initiate processes to reprogramme protein synthesis and thus orchestrate the appropriate cellular response. Recent data show that the elongation stage of protein synthesis is a key regulatory node for translational control in health and disease. There is a complex set of factors that individually affect the overall rate of elongation and, for the most part, these influence either transfer RNA (tRNA)- and eukaryotic elongation factor 1A (eEF1A)-dependent codon decoding, and/or elongation factor 2 (eEF2)-dependent ribosome translocation along the mRNA. Decoding speeds depend on the relative abundance of each tRNA, the cognate:near-cognate tRNA ratios and the degree of tRNA modification, whereas eEF2-dependent ribosome translocation is negatively regulated by phosphorylation on threonine-56 by eEF2 kinase. Additional factors that contribute to the control of the elongation rate include epigenetic modification of the mRNA, coding sequence variation and the expression of eIF5A, which stimulates peptide bond formation between proline residues. Importantly, dysregulation of elongation control is central to disease mechanisms in both tumorigenesis and neurodegeneration, making the individual key steps in this process attractive therapeutic targets. Here, we discuss the relative contribution of individual components of the translational apparatus (e.g. tRNAs, elongation factors and their modifiers) to the overall control of translation elongation and how their dysregulation contributes towards disease processes
RTN3 Is a Novel Cold-Induced Protein and Mediates Neuroprotective Effects of RBM3.
Cooling and hypothermia are profoundly neuroprotective, mediated, at least in part, by the cold shock protein, RBM3. However, the neuroprotective effector proteins induced by RBM3 and the mechanisms by which mRNAs encoding cold shock proteins escape cooling-induced translational repression are unknown. Here, we show that cooling induces reprogramming of the translatome, including the upregulation of a new cold shock protein, RTN3, a reticulon protein implicated in synapse formation. We report that this has two mechanistic components. Thus, RTN3 both evades cooling-induced translational elongation repression and is also bound by RBM3, which drives the increased expression of RTN3. In mice, knockdown of RTN3 expression eliminated cooling-induced neuroprotection. However, lentivirally mediated RTN3 overexpression prevented synaptic loss and cognitive deficits in a mouse model of neurodegeneration, downstream and independently of RBM3. We conclude that RTN3 expression is a mediator of RBM3-induced neuroprotection, controlled by novel mechanisms of escape from translational inhibition on cooling
Recommended from our members
Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration.
Recent interest in astrocyte activation states has raised the fundamental question of how these cells, normally essential for synapse and neuronal maintenance, become pathogenic. Here, we show that activation of the unfolded protein response (UPR), specifically phosphorylated protein kinase R-like endoplasmic reticulum (ER) kinase (PERK-P) signaling-a pathway that is widely dysregulated in neurodegenerative diseases-generates a distinct reactivity state in astrocytes that alters the astrocytic secretome, leading to loss of synaptogenic function in vitro. Further, we establish that the same PERK-P-dependent astrocyte reactivity state is harmful to neurons in vivo in mice with prion neurodegeneration. Critically, targeting this signaling exclusively in astrocytes during prion disease is alone sufficient to prevent neuronal loss and significantly prolongs survival. Thus, the astrocyte reactivity state resulting from UPR over-activation is a distinct pathogenic mechanism that can by itself be effectively targeted for neuroprotection
Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing.
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs
- âŠ