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ABSTRACT

The RNA exosome is essential for 3′ processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells.
Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome
complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress.
Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we
uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system
allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both
models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a
process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and
show that overexpression of SUMO1 alone is sufficient to suppress EXOSC10 abundance. Reducing EXOSC10 expression by
RNAi in human cells correlates with the 3′ preribosomal RNA processing defects seen in the cold as well as reducing the
40S:60S ratio, a previously uncharacterized consequence of EXOSC10 suppression. Together, this work illustrates that
EXOSC10 can be modified by SUMOylation and identifies a physiological stress where this regulation is prevalent both in vitro
and in vivo.

Keywords: 40S subunits; cold shock; RNA exosome; rRNA processing; SUMOylation

INTRODUCTION

Controlled cooling of mammalian cells is used both in indus-

try and medicine. For example, temperatures below 37°C are

used in recombinant protein production to reduce costs and

prolong cell lifespan (Al-Fageeh et al. 2006), while medicinal

cooling, often termed therapeutic hypothermia, is neuropro-

tective following surgical or injury-induced loss of blood flow

to the brain (Knight and Willis 2015). Short-term exposure

to cooling is also beneficial in two mouse models of chronic

neurodegeneration, extending lifespan, and neurological per-

formance (Peretti et al. 2015). Greater understanding of the

molecular mechanisms that underlie the response to cooling

at both the cellular and organismal level will therefore assist

these applications.

In this regard, a number of studies demonstrate that post-

transcriptional control of gene expression makes a major

contribution to the cellular response to cooling and this is

in part mediated by the modification of the activity of trans-

lation factors (Hofmann et al. 2012; Knight et al. 2015;

Roobol et al. 2015). However, the response of the ribosome

to cooling and any subsequent contribution of the ribosome

has not been studied. Ribosome biogenesis is a complex pro-

cess that is intricately linked to the cellular stress response in

mammalian cells (Holmberg Olausson et al. 2012).We there-

fore analyzed whether cold stress induces alterations in the ri-

bosome, uncovering a novel mode of regulation via the

nuclear exosome.

The exosome is a multisubunit protein complex present in

both the nucleus and cytoplasm that functions as an RNA nu-

clease. Specificity is imparted by interaction with additional

protein complexes that have been described by recent inter-

actome and structural studies (Januszyk and Lima 2014).

The catalytically inert core of the exosome consists of a five

membered ring of proteins (EXOSC4-9) with which three

cap proteins associate (EXOSC1-3). Ribonuclease activity
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associates with the inert core in the form of two proteins,

EXOSC10 andDis3. EXOSC10 associates with the capped end

of the core, is predominantly nuclear and is highly enriched

in nucleoli (Tomecki et al. 2010). Functionally, EXOSC10

has been implicated in ribosome biogenesis, snoRNA pro-

cessing, and surveillance and degradation of nonfunc-

tional transcripts (Preker et al. 2008; Gudipati et al. 2012;

Schneider et al. 2012; Sloan et al. 2013). Dis3 is present in

the cytoplasm and nucleus (but not the nucleolus) and is in-

volved in degradation of cytoplasmic mRNA and premature-

ly terminated nascent mRNA in nuclei (Anderson and Parker

1998; Tomecki et al. 2010; Lemay et al. 2014). Importantly,

the RNA substrates of the exosome constitute both on-path-

way RNAs that will ultimately be functional, as well as off-

pathway RNAs that require complete degradation.

SUMOylation is a post-translational protein-based modi-

fication similar in structure and conjugation mechanism to

the ubiquitin system. Three ∼15 kDa SUMO proteins are ex-

pressed in mammals, which when ligated to lysine residues

alter target protein function, stability, and/or interactions

(Flotho and Melchior 2013). SUMO1 differs from SUMOs

2 and 3 in its primary protein sequence, and also in its inabil-

ity to form polySUMO chains. SUMO2 and 3 differ so little

that the proteins are regularly referred to as one—SUMO2/

3—despite being expressed from independent genes. The

functions of SUMOylation are multifarious, depending upon

SUMO isoform, substrate, and cell context (Flotho and

Melchior 2013). Global SUMOylation increases as part of the

response to a range of stresses, such as hypoxia, heat stress,

and following DNA damage (Tempé et al. 2008). SUMO

and ubiquitin share another family member, NEDD8, which

is highly analogous to SUMOylation, being conjugated by a

similar enzyme cascade to modulate target protein functions

(Enchev et al. 2015).

SUMO induction following cooling of mammalian cells

has been reported previously (Lee et al. 2007, 2014; Yang et

al. 2009; Wang et al. 2012), and herein we demonstrate that

the RNA exosome is a target for SUMO conjugation in cooled

cells. Expression of EXOSC10 is reduced upon cooling both

in cell lines and in vivo, which we correlate with perturbation

of multiple 3′ ribosomal RNA (rRNA) processing activities

associated with EXOSC10. We identify EXOSC10 as a direct

target for SUMOylation and show that in parallel to reduced

EXOSC10 expression, there is increased SUMOylation of

EXOSC10 in the cold. Mutation of three candidate lysine

residues in EXOSC10 generates a protein that cannot be

SUMOylated that shows increased expression in the cold.

Suppression of EXOSC10 by RNAi phenocopies defects

in rRNA processing observed during cooling. Together these

data indicate a mechanism by which cooling-induced

SUMOylation of EXOSC10 reduces its expression, resulting

in 3′ rRNA processing defects. Interestingly, these 3′ rRNA

defects ultimately lead to a previously unreported alteration in

40S ribosome subunit abundance as a result of EXOSC10

suppression.

RESULTS

Cooling alters relative ribosome subunit abundance

Upon cooling, HEK293 cells exhibit a reduction in the rate of

protein synthesis, driven primarily by slowed translation

elongation via the Ca2+/eEF2K/eEF2 axis (Knight et al.

2015). This was accompanied by a reduction in the abun-

dance of 40S ribosomal subunits relative to 60S subunits

(Knight et al. 2015). We used sucrose density ultracentrifuga-

tion to confirm and quantify these data and a significant 23%

reduction in 40S subunits was observed, when standardized

against 60S abundance (Fig. 1A). It was possible that the re-

duction in free 40S subunits was due to increased association

of 40S subunits with the polysomes, perhaps due to reduced

initiation. Therefore, we performed sucrose density gradients

in the absence of Mg2+ and presence of 25 µM EDTA to dis-

assemble polysomes, so that all subunits were quantifiable in

the subpolysomes. Following 24 h of cooling to 32°C, we ob-

serve a significant reduction in the 40S subunit peak, relative

to the 60S (Fig. 1B). This was quantified at 28% less 40S sub-

units relative to 60S, comparable to the decrease quantified

from EDTA free gradients.

To complement these observations of mature ribosome

subunit abundance, we analyzed the quantity of the mature

rRNAs from each subunit—the 18S and 28S, respectively.

RNA was purified from EDTA-free sucrose density gradients

and size-resolved (Supplemental Fig. S1). Densitometry for

the 18S and 28S from three independent experiments re-

vealed a 9% ± 2% (P = 0.01) reduction in the abundance of

the 18S rRNA compared to the 28S (Supplemental Fig. S1).

When only rRNA from the fractions corresponding to the

40S and 60S subunits were analyzed, the reduction in 18S

compared to 28S was quantified at 20% ± 4% (P = 0.01).

This is comparable to the 23% reduction in free 40S subunits

observed in EDTA-free sucrose gradients in Figure 1A.

Cooling suppresses specific 3′ processing events during
ribosome biogenesis

An alteration in 40S:60S ratio results from either reduced 40S

abundance or increased 60S abundance. A specific increase in

60S levels seems unlikely, leading us to hypothesize that the

change in ribosome subunit abundance results from a specif-

ic defect in 40S ribosome subunit synthesis. Ribosomes are

synthesized from ribosomal RNAs and proteins; three of

the four rRNAs are transcribed as a single pre-rRNA, which

requires processing by endo- and exonucleolytic enzymes.

Thus, within the initial 47S pre-rRNA are the 18S rRNA con-

tributing to the small subunit and two of the three large sub-

unit rRNAs (the 5.8S and 28S; Fig. 1C). Between the mature

rRNAs, and the 5′ and 3′ ends of the pre-rRNA are “tran-

scribed spacers” sequences. These sequences of pre-rRNA

have to be removed to produce mature rRNAs, a process

that can occur via multiple pathways depending on the order

of cleavage events (Hadjiolova et al. 1993).

Knight et al.
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The abundance of size-resolved

pre-rRNA species was determined by

Northern blotting, with total RNA isolat-

ed from HEK293 cells cooled to 32°C for

4 or 24 h compared to uncooled control

cells. This showed a specific time-depen-

dent increase in abundance of a number

of pre-rRNA species upon cooling (Fig.

1D). Quantification revealed the extent

of pre-rRNA alterations; following 24 h

of cooling there was a significant increase

in the abundance of the 41S (1.47-fold),

21S (1.27-fold), and 18SE (1.29-fold)

pre-rRNAs (Fig. 1E), compared to con-

trol cells. These pre-rRNAs are precursors

of 18S rRNA, contributing to the small ri-

bosomal subunit. An increase in abun-

dance is indicative of a block in pre-

rRNA processing at these stages, consis-

tent with reduced final 40S product. The

abundance of the A′–A0 rRNA fragment

located 5′ of the small subunit rRNA

also increased upon cooling (Fig. 1D,E).

Unexpectedly, the abundance of 12S

(1.81-fold) and 7S (1.36-fold) pre-

rRNAs was also increased (Fig. 1D,E).

Both of these rRNAs are upstream of

the 5.8S rRNA of the large ribosomal

subunit (Fig. 1C). Therefore, cooling of

HEK293 cells affected the processing of

pre-rRNAs required for both ribosomal

subunits, although a specific reduction

in the 40S subunits was observed (Fig.

1A,B). Interestingly, the stalled pre-

rRNAs are all extended at the 3′ end

of the mature form, with no defects in

5′ processing seen.

To analyze pre-rRNA processing fur-

ther a pulse-chase method was used.

This method directly labels de novo cel-

lular RNA, allowing temporal analysis

of the rates of pre-rRNA processing.

The rate of pre-rRNA processing in

HEK293 cells incubated at 32°C for

24 h was reduced compared to the rate

at 37°C (Fig. 1F). It must be highlighted

that there was a significant effect on up-

take and usage of labeled orthophosphate

when labeling was performed at 32°C

rather than 37°C. To control for this,

the quantification in Figure 1E was stan-

dardized to the abundance of 47/45S pre-

rRNA detected at time point 0 for each

temperature. The radiolabel present in

41S and 21S pre-rRNAs in cells cooled

FIGURE 1. 40S subunit abundance is reduced by mild hypothermia due to defects in rRNA pro-
cessing. (A) HEK293 cells were maintained at 37°C (red line) or 32°C for 24 h (blue line), then ri-
bosomal subunits separated by sucrose density ultracentrifugation. The relative change in 40S:60S
ratio is annotated beside the trace, which is the average of three independent experiments ±SEM. P
= 0.043. (B)Cells treated as inAwere analyzedusing lysis buffer anddensity gradients containing25
μMEDTA to dissociate polysomes. Relative change in 40S:60S ratio is annotated from three inde-
pendent replicates ±SEM. P = 0.024. (C) Schematic representation of pre-rRNAs in human cells
from the initial 47S/45S transcript to the mature 18S, 5.8S, and 28S rRNAs. The internal (ITS)
and external (ETS) transcribed spacers are indicated. (D) Total RNA extracted fromHEK293 cells
incubated for up to 24 h at 32°C was size separated and used in Northern blotting using [32P]
labeled oligonucleotide probes complementary to specific sequences of rRNAs. 18S and 28S
were detected by Northern blot (NB). (E) Quantification of changes in rRNAs during mild hy-
pothermia of HEK293 cells shown in D. The 41S values are taken using the ITS1 probe. The av-
erage rRNA abundance from three biological repeats is shown ±SEM. (∗) P < 0.05, (∗∗) P < 0.01.
(F) Total RNA was extracted at the indicated times into the chase of a pulse-chase rRNA labeling
with [32P] orthophosphate in cooled and control HEK293 cells. Size-separated RNA visualized by
methylene blue (MB) staining and autoradiography. (G) Quantification of rRNA abundances in F
plotted relative to the 180 min 37°C sample for each rRNA, which has been set to one. n = 3. 41S
(P = 0.037), 21S (P = 0.034), 12S (P = 0.040), 7S (P = 0.002).
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for 24 h increased steadily from 30 min reaching 2.7-fold and

1.5-fold increases by 180 min, respectively (Fig. 1G). The

18SE radiolabeled band also increased by 1.6-fold, falling

narrowly short of significance (P = 0.053). These increases

parallel those observed by Northern blot (Fig. 1D), together

suggesting that 40S subunit pre-rRNA processing is signifi-

cantly slowed due to stalling at the 21S and 18SE stages.

Pre-rRNAs contributing to the large subunit were also per-

turbed by cooling in this pulse-chase experiment. There was a

significant decrease in radiolabel incorporation into the 12S

and 7S forms by 1.4-fold and 4.2-fold, respectively (Fig.

1F). This is in contrast to an increase in these pre-rRNAs

seen by steady-state Northern blotting (Fig. 1D). A possible

explanation for this is that ITS2 is processed while ITS1 re-

mains intact. Such an increase in this route of rRNA matura-

tion could also explain the low levels of 12S and 7S in Figure

1D. The increase in 41S pre-rRNA, where ITS1 and ITS2 pro-

cessing has not occurred, is also consistent with this.

The 7S form termed here may also constitute the 5.8S, as

achieving resolution of these small RNAs is difficult. Likewise,

the accumulation of fully processed 18S and 28S rRNAs may

contribute to the bands attributed to the 18SE and 30S, re-

spectively. The increase in 12S and 7S pre-rRNAs seen by

Northern blotting compared to the reduced abundance of

de novo pre-rRNAs could be the result of accumulation of

these pre-rRNAs over a longer time (24 h for Northern blot-

ting) compared to the shorter pulse-chase experiments (3 h).

Global SUMOylation is increased by mild hypothermia

SUMOylation has been identified as a regulator of ribosome

biogenesis, via a number of mechanisms, such as regulating

the localization of ribosome biogenesis factors (Finkbeiner

et al. 2011). Interestingly, global SUMOylation has also

been observed to increase in multiple cell and animal models

of cooling (Lee et al. 2007, 2014; Yang et al. 2009; Wang et al.

2012). To investigate this as a possible mechanism by which

ribosome synthesis is perturbed by cold, we analyzed global

SUMOylation in cooled HEK293 cells. SUMO conjugation

can be assayed as an accumulation of high molecular weight

(HMW) proteins detected by Western blotting using SUMO

antibodies. Following cooling for 24 h there was an increase

in HMW SUMO bands for SUMO1 and SUMO2/3 (Fig. 2).

This was quantified as an approximately twofold increase

in both cases and was specific for SUMO, with a nonsignifi-

cant decrease in ubiquitinylation and no change in HMW

NEDDylation (Fig. 2).

Thus, SUMOylation is specifically increased by cooling.

The mechanism by which this occurs is not known, although

we detected no alteration in SUMO mRNA abundance (not

shown), indicating a likely post-transcriptional regulation.

Future work will analyze the regulation of both SUMO con-

jugation and specific cleavage mechanisms in response to

cooling to identify how SUMOylation is globally increased

by the cold.

Cooling reduces the expression of the 3′ exonuclease
EXOSC10

The rRNA phenotype observed following cooling is sugges-

tive of a 3′ pre-rRNA processing defect; the aberrant 21S,

18SE, 12S, and 7S pre-rRNAs are all extended in the 3′

(Fig. 1). Furthermore, the A′–A0 fragment that is also in-

duced upon cooling is likely to be the result of reduced

3′–5′ degradation following endonucleolytic cleavage (Kent

et al. 2009; Sloan et al. 2014). Recent data have defined the

role of the exosome in these rRNA processing events, namely

the 3′ of the 18S rRNA, the 3′ of the 5.8S rRNA and A′–A0

degradation (Kent et al. 2009; Preti et al. 2013; Sloan et al.

2013; Tafforeau et al. 2013).

The exosome consists of a nine-subunit core (proteins

named EXOSC1-9), with which two 3′–5′ exonucleolytic

RNases associate, termed EXOSC10 and Dis3 (Fig. 3A;

Januszyk and Lima 2014). Of these enzymatic components

only EXOSC10 is present in the nucleolus, and has been im-

plicated in pre-rRNA processing (Kent et al. 2009; Preti et al.

2013; Sloan et al. 2013; Tafforeau et al. 2013). We therefore

asked whether cooling alters the expression of a subset of exo-

some proteins. The abundance of EXOSC10 was suppressed

by 35% ± 6% after 24 h of cooling in HEK293 cells (P =

0.030), while in contrast the expression of Dis3 was not

changed (Fig. 3B). Interestingly, the expression of three

proteins from the exosome core, EXOSC3, EXOSC5, and

EXOSC8 were also reduced by cooling after 24 h, with similar

kinetics to EXOSC10 (Fig. 3B). Modest reduction of

EXOSC10 was seen after 4 h of cooling, in time with

FIGURE 2. Global SUMOylation is increased by mild hypothermia.
HEK293 cells were incubated at 32°C for 4 or 24 h or maintained at
37°C, then whole cell lysates were analyzed by Western blotting.
Quantification of the abundance of >150 kDa high molecular weight
(HMW) SUMO1, SUMO2/3 and ubiquitin protein conjugates from
three independent experiments are given below each blot. Values are
the averages ± SEM. Both SUMO1 and SUMO2/3 HMW conjugates
are significantly increased—P = 0.028 and 0.041, respectively.
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activation of the cooling-induced phosphorylation of eEF2

and induction of RBM3 and CIRP (Danno et al. 1997;

Nishiyama et al. 1997; Knight et al. 2015).

EXOSC10 is SUMOylated by SUMO1, but not SUMO2

Having confirmed increased SUMOylation in our models of

cooling, we next asked whether this could affect EXOSC10

expression. Reports of dynamic changes in EXOSC10 expres-

sion are not extensive, however it has been shown that yeast

EXOSC10 is destabilized by deletion of its binding partner

Rrp47 (C1D in humans) and in human

cell lines by the chemotherapeutic 5-

fluorouracil (Kammler et al. 2008;

Feigenbutz et al. 2013). Interestingly,

EXOSC10 has previously been identified

in screens of SUMOylation (Zhao et al.

2004; Golebiowski et al. 2009; Westman

et al. 2010; Becker et al. 2013; Impens

et al. 2014; Tammsalu et al. 2014). This

presents the possibility that the increased

SUMOylation in the cold participates in

regulation of EXOSC10 (Fig. 3B).

To analyze this, we utilized a His6 tag/

nickel precipitation method to isolate

SUMO1 or SUMO2 conjugated proteins

via a His6 tag in the N-terminal of exog-

enous SUMO1 or SUMO2 in HEK293

cells (Leidecker and Xirodimas 2012).

SUMO3 was not analyzed, given its

high similarity to SUMO2. The denatur-

ing precipitation occludes the possibility

of noncovalent precipitation of target

proteins, such that any protein precipi-

tated must be SUMOylated. A further in-

dicator of conjugation is a size shift

compared to the unmodified protein.

A band consistent with SUMOylation of

EXOSC10 was detected following expres-

sion and precipitation of His6-SUMO1,

but not His6-SUMO2 (Fig. 3C). Impor-

tantly, expression of both SUMO con-

structs precipitated the known SUMO

targets RanGAP1 and p53, illustrating

the specificity of SUMO1 conjugation

to EXOSC10 (Fig. 3C).

Next, conjugation of SUMO1 to

EXOSC10 was analyzed at both

37°C and 32°C. The abundance of

EXOSC10∗SUMO1 increased 2.1-fold

(±0.22, P = 0.036) in cells incubated at

32°C compared to those maintained at

37°C (Fig. 3D). The SUMOylation of

RanGAP1 was not increased, suggesting

a selective modulation of specific SUMO targets upon cool-

ing. Thus, EXOSC10 is specifically SUMOylated by

SUMO1, a process which is increased as SUMOylation is in-

duced by cooling.

Interestingly, overexpression of SUMO1 resulted in a re-

duction in EXOSC10 expression at both 37°C (Fig. 3C, lane

1 versus lane 2, and Fig. 3D, lane 1 versus lane 2) and 32°C

(Fig. 3D, lane 3 versus lane 4). This constitutes a significant

34% decrease (±3%, P = 0.007) at 37°C. Therefore, it appears

that up-regulation of SUMOylation either by exogenous

overexpression or by cold stress correlates with reduced

steady-state expression of endogenous EXOSC10.

FIGURE 3. EXOSC10 is SUMOylated and its expression reduced by cooling. (A) Schematic rep-
resentation of themammalian exosome. EXOSC1–3 constitutes the cap, part of the catalytically in-
ert core when combined with EXOSC4–9. EXOSC10 binds the core at the cap and contains
exonucleolytic activity—denoted by a black circle. Dis3 binds to the base of the core and contains
twoRNase site (blackcircles).The subcellulardistributionof eachcomponent is given. (B)HEK293
cells were incubated at 32°C for either 4 or 24 h and compared to cells maintained at 37°C. Lysates
from these cells were analyzed byWestern blot for the expression of the proteins shown. eEF2 T56-
P, RBM3, and CIRP induction are indicative of the reduction in temperature. β-actin is used as a
loading control. (C) His6-tagged constructs encoding SUMO1 or SUMO2 were transiently trans-
fected intoHEK293 cells, whichwere then cultured at 37°C for 48 h. Cells were then lysed andHis6-
tagged proteins precipitated and analyzed byWestern blotting as the His6 pulldown, compared to
whole cell lysates termed the input. Conjugated proteins are annotated. (D) His6-SUMO1 was ex-
pressed at 37°C or 32°C as in C and conjugated proteins precipitated. Western blotting for
EXOSC10 abundance in the pulldowns, using RanGAP1 as a loading control for a precipitated pro-
tein. Conjugated proteins are annotated. Dashed lines indicate removal of lanes.
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SUMOylation deficient EXOSC10 shows increased
steady-state expression in the cold

We generated a Flag-tagged EXOSC10 construct (Flag-

EXOSC10 WT), as well as a Flag-tagged construct with three

putative SUMOylatable lysine residues mutated to arginine,

to which SUMO cannot be conjugated (Flag-EXOSC10

3KR) (Fig. 4A). These lysine residues were chosen due to

their conservation across vertebrates (Fig. 4B) and high score

in two independent SUMO site prediction tools GPS-SUMO

(Zhao et al. 2014) and SUMOplot (http://www.abgent.com/

sumoplot). Equal amounts of both constructs were tran-

siently transfected and the resulting expression compared

in cooled cells. Endogenous EXOSC10 is repressed by cool-

ing, but this was restored by both expression constructs

(Fig. 4C). Importantly, the steady-state expression of the

Flag-EXOSC10 3KR construct was consistently higher than

the wild-type protein. This is the case at both 32°C (Fig.

4C) and at 37°C (Fig. 4D), suggesting that the three lysine res-

idues promote the expression of EXOSC10.

To analyze this further, the conjugation of the Flag-

EXOSC10 constructs to SUMO1 was determined by His6-

SUMO1 precipitation. Wild-type Flag-EXOSC10 precipitat-

ed with His6-SUMO1, giving a distinct band at the expected

molecular weight (Fig. 4D). Other bands

were also precipitated, which may con-

stitute further SUMOylated forms of

EXOSC10. Importantly, the 3KR mutant

did not precipitate as efficiently with

His6-SUMO1 (Fig. 4D). Although upon

longer exposures SUMO1∗EXOSC10

3KR bands could be seen, these are

more than 100-fold less abundant than

the wild-type. Low-level SUMOylation

of the mutant construct may be a con-

sequence of forced overexpression of

EXOSC10. The SUMOylation of both

RanGAP1 and p53 was similar between

conditions, acting as a control for pull-

down efficiency.

Interestingly, overexpression of either

Flag-EXOSC10 construct appeared to

induce SUMO1 levels compared to

SUMO1 expression alone (Fig. 4D).

Why this occurs is not known. We also

note the presence of a distinct band in

the SUMO1 Western blot within the

Flag-EXOSC10 WT input lane (marked

with an asterisk), not present in the

3KR lane; its mass is consistent with

SUMOylated EXOSC10. Altogether,

these data suggest that the majority of

SUMOylation upon EXOSC10 occurs

upon lysine residues 168, 201, or 583.

Furthermore, the increased steady-state

expression of the Flag-EXOSC10 3KR

protein correlates with its reduced

SUMOylation.

Suppression of EXOSC10 partially
recapitulates the rRNA defects of
cooling

Using two independent siRNAs, the ex-

pression of EXOSC10 expression was re-

duced by 70% with siRNA 1 and to a

similar extent to cooling (∼30%) with

FIGURE 4. SUMOylation of EXOSC10 reduces its expression. (A) Schematic representation of
Flag-tagged wild-type and a mutant construct encoding EXOSC10. Lysine (K) residues mutated
to arginine (R) are shown. The gray boxed area shows the N-terminal Flag tag with endogenous
domains of EXOSC10 also annotated. (B) Sequence conservation of putative SUMO sites was an-
alyzed using ClustalW with the SUMOylated lysine highlighted—including SUMOylation motif
where present. (C) The abundance of Flag-tagged EXOSC10 was analyzed by Western blot 48 h
following transfection into HEK293 cells subsequently incubated at 32°C for 24 h. The expression
of endogenous EXOSC10 at 37°C is included to illustrate the loss of protein upon cooling. (∗)
Indicates a nonspecific band. (D) His6-tagged SUMO1 was expressed alone or with each Flag-
tagged EXOSC10 construct for 48 h, followed by precipitation of His6-tagged proteins. The con-
trol lane containing no construct was transfected with empty pcDNA. Annotations show the con-
jugated proteins in the pulldowns.
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siRNA 2 (Fig. 5A). As a control, the alternative exosome nu-

clease, Dis3, was targeted by siRNA (Fig. 5A). Interestingly,

knockdown of EXOSC10 using siRNA 1 resulted in reduced

expression of the core exosome proteins EXOSC8 and 5,

whereas siRNA 2 reduced EXOSC5 and 3 expression (Fig.

5A). This is similar to the effect seen following cooling, where

EXOSC10 expression was lost, as well as other exosome pro-

teins (Figs. 3B, 5A). Knockdown of Dis3 had little effect on

EXOSC8 and 3, but reduced EXOSC5 expression slightly

(Fig. 5A). The induction of phosphorylation of Thr56 on

eEF2 is used as a positive control for cooling (Knight et al.

2015). Notably this phosphorylation is also induced, al-

though not to the same extent, by both EXOSC10 siRNAs,

but not by knockdown of Dis3 (Fig. 5A). It is unclear why

this is the case, but it is interesting to note reports that ribo-

some biogenesis stress can influence translation signaling

(Gismondi et al. 2014).

The effect of cooling on ribosome biogenesis (Fig. 1) is

recapitulated by EXOSC10 RNAi; increased abundance of

the A′–A0 fragment and the 21S, 12S, and 7S pre-rRNAs

(Fig. 5B,C). In each case, siRNA 1 ap-

peared to give the greatest increase in

pre-rRNA, in agreement with greater

protein knockdown with this siRNA.

Knockdown of Dis3 caused no signifi-

cant changes in the abundance of any of

these rRNA species. In addition, pulse-

chase labeling following EXOSC10

knockdown resulted in increased 41S

and 21S rRNA, and reduced 12S and 7S

rRNAs compared to control cells, in

strong correlation with the effect of cool-

ing (Fig. 5D,E).

The only notable difference between

cooling and EXOSC10 knockdown by

siRNA is in the abundance of the 18SE

pre-rRNA, which was not increased by

RNAi suppression of EXOSC10, but is

increased following cooling (Fig. 5B,C).

This is perhaps not surprising as the pro-

cessing step of 18SE pre-rRNA occurs in

the cytoplasm, from which EXOSC10 is

largely occluded (Rouquette et al. 2005;

Tomecki et al. 2010).

EXOSC10 is required for 40S subunit
synthesis and maintaining global
translation

Given the correlation between EXOSC10

knockdown and cooling in terms of

rRNA processing we asked if EXOSC10

suppression has an effect on the abun-

dance of 40S or 60S subunits, similar

to the effect observed during cooling.

Cytoplasmic lysates were generated fol-

lowing knockdown of EXOSC10 and

compared to control knockdown, all at

37°C. Sucrose density gradients were per-

formed without EDTA to allow for the

abundance of polysomes to also be ana-

lyzed. Knockdown of EXOSC10 using

both siRNAs resulted in a reduction in the

free 40S population compared to the 60S

population (Fig. 6A)—37°C control is in

FIGURE 5. EXOSC10 knockdown recapitulates the cooling-induced defects in ribosome bio-
genesis. (A) HEK293 cells were transfected with siRNAs as shown then cultured for a further
48 h. Cooled cells were transferred to 32°C for the final 24 h. Lysates were prepared for SDS-
PAGE and the expression of the indicated proteins determined by Western blot. The induction
of eEF2 T56-P, RBM3, and CIRP is used to confirm the cooling response and β-tubulin is
used as a loading control. (B) Cells were treated in parallel to A, then total RNA size separated
and analyzed by Northern blotting. (C) Quantification of the abundance of pre-rRNAs shown
in B following cooling or siRNA suppression of EXOSC10. The abundance of each pre-rRNA
is compared to mock treatment at 37°C, which is set to one (gray line). The data show the average
of three biological repeats ±S.E.M. (†) Indicates a P-value approaching significance (P = 0.061 for
both). (D) HEK293 cells were transfected with EXOSC10 siRNA 1, then after 48 h at 37°C cells
labeled with [32P] orthophosphate and the incorporation into nascent RNA analyzed by agarose
formaldehyde electrophoresis. Methylene blue (MB) staining is used as a loading control, with
calculated abundances normalized to this. The pre-rRNA and rRNA forms attributed to each
band are annotated. (E) Quantification of the abundance of the indicated pre-rRNAs standard-
ized to the abundance of 47/45S pre-rRNA at 0 min for each pre-rRNA.
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red and EXOSC10 RNAi traces are overlaid in purple. This

was quantified as a 28% and 12% reduction in 40S subunits

for siRNA1 and 2, respectively (Fig. 6B).

The change in 40S:60S ratio has not previously been re-

ported as a consequence of suppression of EXOSC10. This

also adds to the correlation between the phenomenon of al-

tered 40S:60S ratio upon cooling with the loss of EXOSC10

under these conditions. There was also a striking loss of poly-

somes following EXOSC10 knockdown, consistent with a

measured reduction in the rate of protein synthesis (Fig.

6A,C). Reduced protein synthesis is likely the result of de-

creased translation initiation due to fewer 40S subunits being

available. We previously identified signaling to eEF2 as the

major contributor to reduced protein synthesis in the cold

(Knight et al. 2015), it is possible that the reduction in 40S

subunits also plays a part.

In vivo cooling causes defects in ribosome biogenesis
and alters the 40S:60S ratio

To complement the in vitro analysis, we analyzed tissue taken

from whole-body cooled mice. Administration of 5′AMP in-

duces a hypometabolic state whereby core body temperatures

can be altered to their surroundings (Peretti et al. 2015). This

was performed by gradual cooling of mice to 16°C (∼2 h),

then maintenance of the mice at 16°C for 45 min. Using

this model the increase in SUMOylation was recapitulated

in vivo. Lung tissue was prepared from cooled and control

treated mice, and the HMW abundance of SUMO1 observed

to significantly increase following cooling by more than five-

fold (Fig. 7A). SUMO2/3 conjugates showed a trend toward

an increase in cooled mice, although this was not significant

(P = 0.14). In parallel to this increase in SUMO1 HMW con-

jugation the in vivo expression of EXOSC10 was reduced af-

ter cooling by a striking 64% compared to control mice (Fig.

7A). This is entirely consistent with the effect seen in HEK293

cells. Furthermore, the specific increase in SUMO1 lends fur-

ther to the observation that EXOSC10 can only be

SUMOylated by this SUMO isoform (Fig. 3C).

Next, total RNA from the hippocampi of cooled mice

was analyzed by Northern blotting using murine specific

probes, showing changes in specific pre-rRNAs (Fig. 7B).

Quantification of these changes shows a significant increase

in 20S pre-rRNA with cooling (Fig. 7C), analogous to the

21S increase in human cells (Fig. 1D). Similarly, there was

an increase in the 12S pre-rRNA in mouse hippocampi, al-

though this did not achieve significance (P = 0.08) due to

sample variability within the analysis (Fig. 7C). A 7S pre-

rRNA could not be detected in these mouse samples. There

were also differences in the murine pre-rRNA processing

compared to human, with increased 29S pre-rRNA (human

30S) and decreased 47/45S pre-rRNA in the mouse (Fig. 7C).

Despite these differences, the general trend for murine pre-

rRNAs is defective 3′ processing upstream of both mature

subunit rRNAs, akin to the changes in human cells.

Therefore, the protein and RNA alterations observed in

human cells in vitro are almost entirely recapitulated in

vivo. As a final comparison, hippocampal lysates from cooled

and control mice were analyzed by sucrose density ultracen-

trifugation. Following cooling, the abundance of free 40S rel-

ative to 60S subunits was reduced by 46% ± 6% (Fig. 7D).

There was a notable increase in free 60S subunits upon cool-

ing, which is likely attributable to the loss of polysomes that

also occurs during cooling. However, the level of 40S sub-

units decreased at the same time resulting in this large change

in 40S:60S ratio.

The change in 40S to 60S subunit abundance is conserved

between human cultured cells and this mouse model, despite

the differences between the model systems—long-term mild

cooling of cells in culture versus short-term deep cooling of

mice. This suggests that alterations in 40S:60S ratios are a

conserved response to varying degrees of cold stress across

multiple mammalian species.

DISCUSSION

The exosome is required for a balanced 40S:60S ratio

This work details the consequences for cytoplasmic ribo-

somes of suppression of the nuclear exosome (Supplemental

Fig. S4). Our data correlate with previous observations of
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FIGURE 6. EXOSC10 maintains the 40S:60S ratio and rate of global
protein synthesis. (A) Cells were transfected with EXOSC10 siRNAs
and maintained at 37°C for 48 h before analysis by sucrose density ultra-
centrifugation to quantify free subunit and polysome abundance. (B)
The free 40S:60S ratio relative to mock transfected cells at 37°C was cal-
culated from A. Values shown are the average of two independent exper-
iments ±SEM. (C) Cells were treated as in A, the incorporation of [35S]
label into nascent protein measured by scintillation counting and ex-
pressed relative to mock transfection at 37°C. The values are the average
of three biological replicates ±SEM.
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EXOSC10 knockdown in regard to regulation of pre-rRNA

processing (Kent et al. 2009; Preti et al. 2013; Sloan et al.

2013; Tafforeau et al. 2013). However, the result of these per-

turbations on mature ribosome subunit abundances has not

been described previously. Surprisingly, despite alterations in

pre-rRNA processing contributing to both the 40S and 60S

subunits, we observe an imbalance in the 40S:60S ratio.

One implication of this observation

is that the pre-rRNA defects may

only be deleterious for production of

40S subunits, and suggests 60S sub-

units may not require complete pro-

cessing for function. Consistent with

this notion, pre-rRNAs from the large

subunit have recently been observed

in the cytoplasm and polysomes of

yeast (Rodríguez-Galán et al. 2015).

Analogous with these observations

in yeast, pre-rRNAs were observed

within polysomes by Northern blot

from a range of conditions analyzed

within this study (Supplemental Fig.

S3). The 12S and 32S rRNAs were de-

tected in polysomes in the absence of

treatment, suggesting that 60S sub-

units containing these pre-rRNAs

can function in translation. Similarly,

18SE and 30S pre-rRNAs were also

seen in polysomes, suggesting that im-

mature 40S subunits may also be

functional (Supplemental Fig. S3).

The absence of larger 47/45S or 41S

pre-rRNA in cytoplasmic fractions in-

dicates no nuclear lysis or sedimenta-

tion of either the small or large

subunit processome (Supplemental

Fig. S3). Perhaps most strikingly, 7S

pre-rRNA was found to be polysomal

in all conditions analyzed, with a po-

tential increase in 60S/80S associated

7S pre-RNA following either cooling

or EXOSC10 RNAi (Supplemental

Fig. S3).

Nascent 40S ribosomal subunits

undergo proofreading prior to final

release from biogenesis factors into

the pool of translating ribosomes

(Lebaron et al. 2012; Strunk et al.

2012). This step is likely to detect ab-

errations such as incompletely pro-

cessed rRNA, although the molecular

outcome for a defective subunit is

not known. Such a quality control

mechanism has not been reported

for 60S subunits prior to engagement

in translation. Nonfunctional rRNA decay (NRD) clears de-

fective ribosomes, both 40S and 60S subunits, which stall on

mRNA during translation (Cole et al. 2009), although it is not

known whether 3′ extended 5.8S rRNA would elicit this

mechanism. Therefore, it is possible that 40S subunit abun-

dance is reduced by EXOSC10 suppression due to greater

surveillance on 40S quality compared to 60S.

FIGURE 7. In vivo cooling induces ribosome biogenesis defects and an altered 40S:60S ratio. (A)
Western blotting from mouse lung tissue from control or 5′AMP cooled mice were analyzed for
the abundance of the indicated proteins. The change in SUMO isoforms and EXOSC10 are indicated,
standardized to β-actin. Values are the average ±SEMwhere n = 3. SUMO1HMW conjugates are sig-
nificantly increased, P = 0.021. EXOSC10 is significantly reduced P = 0.026. (B) Total RNA from the
hippocampi of cooled or control treated mice was extracted and analyzed by Northern blot.
Methylene blue (MB) staining is used to visualize the abundance of mature rRNAs. (C) Pre-
rRNAs quantified and expressed relative to total RNA, defined as the cumulative abundance of
18S and 28S rRNAs. Values for the three replicates shown are averaged and expressed ±SEM. 47S/
45S (P = 0.034), 29S (P = 0.049), 21S (P = 0.040). (D) Hippocampal lysates generated from cooled
or control mice were analyzed by sucrose density ultracentrifugation in the absence of EDTA.
Average values for the areas calculated for the 40S and 60S are shown and converted into the
40S:60S ratio. Data are the average of three mice ±SEM. P = 0.049.
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Implications of EXOSC10 SUMOylation

This is the first confirmation of direct conjugation of
EXOSC10 by SUMO1. In accordance with the His6 precipi-
tation data presented here, previous reports suggest that
only SUMO1 is conjugated to EXOSC10; multiple mass spec-
trometry analyzes of affinity tagged SUMO1 conjugates, but
not SUMO2 or SUMO3, identified EXOSC10 as a SUMO tar-
get (Zhao et al. 2004; Matic et al. 2010; Westman et al. 2010;
Impens et al. 2014; Lamoliatte et al. 2014). In accordance
with this, a screen of the endogenous SUMOylated proteome
identified EXOSC10 conjugation to SUMO1 but not SUMO2
(Becker et al. 2013).

SUMOylation is induced by a variety of stresses including
heat and cold shock, as well as DNA damage and hypoxia
(Tempé et al. 2008). Cooling is the first physiological stress
to be identified during which exosome activity is modulated,
providing a potential model for future study of the conse-
quences of reduced exosome activity. Further work is re-
quired to identify if SUMO conjugation of EXOSC10 is
modulated by other SUMO-inducing stresses. Interestingly,
analysis of SUMO2 conjugates following heat shock found
transient induction of conjugation to EXOSC10 (Golebiow-
ski et al. 2009; Hendriks et al. 2014, 2015) suggesting that
the type of SUMOylation of EXOSC10 may be dependent
upon the applied stress. SUMOylation of EXOSC10 was ob-
served in cells that had not been cooled, implying that
SUMOylation may not only be important during stress.

We identified lysine residues 168, 201, and 583 as putative

SUMOylation sites in EXOSC10. Of these, K168 and K583

have strong SUMOylation consensus motifs, and all three

have been described as positions of SUMOylation in mass

spectrometry screens (Impens et al. 2014; Tammsalu et al.

2014; Hendriks et al. 2015). The location of these sites within
EXOSC10 is of interest. K168 is found between the PMC2NT

protein:protein interaction domain and the catalytic domain,

K201 resides within the core catalytic domain and K583

is found at the end of the RNA binding HRDC domain

(Fig. 4A). We implicate SUMOylation as a regulator of

EXOSC10 steady-state expression, but it will be of interest

to analyze whether SUMO conjugation directly affects

EXOSC10 activity.

It is possible that the exosome is modulated by

SUMOylation of more than just EXOSC10. Indeed, other

exosome subunits appear in screens for SUMOylated pro-

teins, such as EXOSC5 (Becker et al. 2013; Hendriks et al.

2015) and EXOSC9 (Golebiowski et al. 2009; Impens et al.

2014; Lamoliatte et al. 2014; Hendriks et al. 2015). Further-

more, SUMO site prediction tools identify putative sites

in EXOSC2, EXOSC3, EXOSC7, EXOSC8, and EXOSC9

(Zhao et al. 2014) and SUMOplot. Analysis of SUMOylation

of these putative targets will be of great interest, but falls be-
yond the scope of the work presented here.

To our knowledge, our data provide the first evidence be-

yond proteomic screens, of conjugation of SUMO to any exo-

some protein. Interestingly, the exosome protein EXOSC9

has a phospho-SUMO interacting motif (SIM) which is acti-

vated by phosphorylation by CK2 (Stehmeier and Muller

2009). It is tempting to speculate about an interaction be-

tween SUMOylated EXOSC10 and the exosome core via

the SIM within EXOSC9. The published structures of the

exosome illustrate that EXOSC10 and EXOSC9 are not prox-

imal (Makino et al. 2013; Wasmuth et al. 2014), making it

unlikely that SUMOylation influences functional association.

However, SUMOylated EXOSC10 may be able to associate

with the core in an alternative conformation, with any func-

tion of this interaction of great interest.

RNA metabolism and cold stress

Ribosome biogenesis defects were used to study the loss of

exosome function upon cooling in this study. This stemmed

from the initial observation of an altered 40S:60S subunit ra-

tio in cold stressed cells. However, EXOSC10 performs a wide

range of 3′ RNA processing and degradative functions. We

analyzed alterations in promoter upstream transcripts

(PROMPTs) by qPCR upon cooling and following siRNA

suppression of either EXOSC10 or Dis3 (Preker et al.

2011). However, no significant changes in the abundance

of PROMPTs were detected, either after cooling or following

knockdown of EXOSC10 or Dis3 (not shown). This may be

due to incomplete knockdown of the catalytic exosome sub-

units in each case, or redundancy after suppression of only

one exonuclease by siRNA treatment or of only EXOSC10

in the case of cooling.

The final consideration in light of these findings is to ask

why is suppression of the nuclear exosome, leading to a defect

in ribosome biogenesis, a physiological response to cooling?

While the reduction in 40S subunits would reduce the global

rate of translation initiation that accompanies cooling, we

have previously shown that the major driver for the decreased

protein synthesis in these circumstances is inhibition of

translation elongation (Knight et al. 2015). Interestingly,

the attenuation of 40S subunit abundance is specifically det-

rimental to initiation of translation at the HCV IRES (inter-

nal ribosome entry site) (Huang et al. 2012), suggesting that

the reduction in 40S subunits may suppress translation of a

subset of mRNAs. We also hypothesize that cooling-induced

stalling of the 40S subunit at the 21S and 18SE stages allows

these pre-rRNAs to accumulate within preribosomes, a pos-

sibility future work will address. This would permit a rapid

completion of their synthesis upon return to normal

EXOSC10 expression levels, increasing the 40S pool to drive

protein synthesis rates upon rewarming.

MATERIALS AND METHODS

Cell culture and transfections

Human embryonic kidney (HEK)293 cells were grown in DMEM

supplemented with 2 mM L-glutamine 10% FBS (all from
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Invitrogen). Adherent cultures were maintained at 37°C, in a hu-

midified atmosphere under 5% CO2. For cooling experiments, cul-

tures were transferred to a humidified incubator set to 32°C under

5% CO2. siRNAs were purchased from Integrated DNA Technolo-

gies with the following sense sequences: EXOSC10 siRNA 1 5′-GA

AGGCAGCUGAGCAAACA(dTdT)-3′ (Sloan et al. 2013),

EXOSC10 siRNA 2 5′-CUGUGGACCGGAAGCACCA(dTdT)-3′,

Dis3 siRNA: 5′-AGGUAGAGUUGUAGGAAUA(dTdT)-3′ (To-

mecki et al. 2010). siRNAs were transfected using Oligofectamine

(Invitrogen) at 100 nM and subsequent analyzes were at 48 h

post-transfection. cDNA was transfected using Lipofectamine

2000 (Invitrogen) following the suppliers guidelines.

Animal work

Mouse work adhered to institutional guidelines and UK Home

Office regulations. To induce whole-body cooling, FCBs mice

weighing at least 20 g received an intraperitoneal injection with

5′-AMP as described previously and in the main text (Zhang et al.

2006; Peretti et al. 2015).

Cloning and site-directed mutagenesis

The His6-SUMO1 construct was purchased from Addgene (13376).

A His6-SUMO2 construct was generated from HA-SUMO2

(Addgene plasmid 48967) using primers His6-SUMO2: 5′-GAT

GCCTACCCATACGACGTAC-3′ and 5′-AGTCGGATCCTAACC

TCCCGTCTGCTGTTGG-3′. This was BamHI digested and ligated

into pcDNA3 with a His6 tag. Flag-EXOSC10 was generated from

Addgene plasmid 23674 using primers (5′-tagctagcATGGACTAC

AAAGACGATGACGACAAGGCGCCACCCAGTACCCGGGAGC

CCAG-3′ and 5′-tagcggccgcTCTCTGTGGCCAGTTGTACCTG

AAGCCTCT-3′) then inserted into pcDNA3 by digestion with

NheI and NotI. Flag-EXOSC10 3KR was made by rounds of

QuikChange site-directed mutagenesis (Agilent) using the following

primers K168R: 5′-GCAGAATATGGCAAAAAAGCAAGATCTGA

AACTTTCCGGCTGC-3′ and 5′-GCAGCCGGAAAGTTTCAGA

TCTTGCTTTTTTGCCATATTCTGC-3′. K201R: 5′-CCAACACA

CCATTTCTTCCTAGGATCTTCATCAAACCCAATGCTC-3′ and

5′- GAGCATTGGGTTTGATGAAGATCCTAGGAAGAAATGGTG

TGTTGG-3′. K583R: 5′-CGAGAGATGCCCCTGCTCAGATCT

GAAGTTGCAGC-3′ and 5′-GCTGCAACTTCAGATCTGAGCAG

GGGCATCTCTCG-3′. All cloning was verified by sequencing.

Sucrose density ultracentrifugation

Cycloheximide was added to cells at 100 µg/mL for 3 min, then cells

were scrape harvested on ice and lysed in buffer (300 mM NaCl,

15 mM MgCl2 and 15 mM Tris/HCl [pH 7.5] supplemented with

1 mg/mL heparin sulfate and 100 μg/mL cycloheximide plus 0.1%

Triton X-100). Cleared lysates were separated through 10%–50%

gradients of the same buffer, omitting Triton X-100, by centrifuga-

tion at 38,000 rpm for 3 h at 4°C in an SW41-Ti rotor (Beckman

Coulter). For EDTA gradients, MgCl2was omitted and EDTA added

at 25 µM. For mouse hippocampi, tissue was dissected in ice-cold

gradient buffer, followed by homogenization in gradient buffer sup-

plemented with RNase inhibitors (Promega) and 1.2% Triton X-

100. After centrifugation, gradients were separated through a live

254 nm UV spectrometer (Isco). Areas under the curve were calcu-

lated using the trapezoid method.

Pre-rRNA Northern blotting

Analyseswere carriedout as previously described (Knight et al. 2013).

Total RNA was isolated using TRIzol (Invitrogen) as per the manu-

facturer’s instructions. RNAwas size separated on 1% agarose form-

aldehyde-MOPS gels then passively transferred to zeta probe

(BioRad) in 3 M sodium chloride, 0.3 M sodium citrate solutions

(SSC). RNA was crosslinked to zeta probe after transfer using a 254

nm Stratalinker then washed in Church Gilbert’s solution for 30

min at 55°C prior to addition of probe. Of note, 50 pmol of DNA ol-

igonucleotide (Sigma-Aldrich) was labeled with [γ-32P]ATP (Hart-

mann Analytic) using T4 polynucleotide kinase (New England

Biosciences). Probes were purified using G25 columns (GE

Healthcare) then incubated on membranes overnight in Church

Gilbert’s at 55°C. Sequential dilutions of SSC solution were used

to wash membranes and autoradiography developed using a phos-

phorscreen (GE Healthcare). Sequences are as follows. Homo sapi-

ens; ETS1: 5′-CGCTAGAGAAGGCTTTTCTC-3′, ITS1: 5′-CCTC

GCCCTCCGGGCTCCGTTAATGATC-3′, ITS2: 5′-CCGGGGCG

ATTGATCGGCAAGCGAC-3′, 18S: 5′-TTTACTTCCTCTAGAT

AGTCAAGTTCGACC-3′, 28S: 5′-CCCGTTCCCTTGGCTGTGG

TTTCGCTAGATA-3′. Mus musculus; ITS1: 5′-GCTCCTCCACA

GTCTCCCGTTAATGATC-3′, ITS2: 5′-ACCCACCGCAGCGGGT

GACGCGATTGATCG-3′ (Rouquette et al. 2005; Ge et al. 2010;

Sloan et al. 2013).

RNA from 1 mL fractions from gradients was precipitated in 3 M

guanidium chloride and 50% v/v ethanol, resuspended in water then

reprecipitated in 75 mM sodium acetate and 75% ethanol. This was

size-resolved and Northern blotted as above for Supplemental

Figure S3. Quantification of mature rRNAs for Supplemental

Figure S1 utilized SYBR-Safe (Invitrogen) and UV transillumina-

tion. Band densitometry was quantified using Image J (NIH) and

processed to give the relative change in 18S compared to 28S.

Orthophosphate pulse-chase autoradiography

The protocol follows a previously published method (Pestov et al.

2008). Cells in six well plates were labeled with 15 µCi/mL [32P] or-

thophosphate (Hartman Analytic) for 1 h. Media was then removed

and replaced with fresh DMEM. Cells were harvested at time points

after addition of the chase media by scraping into ice-cold PBS

and snap freezing of cell pellets. RNA was isolated by RNeasy

(QIAGEN), then separated by 1% agarose formaldehyde-MOPS

gel electrophoresis. 0.1% methylene blue was used to visualize 18S

and 28S rRNA abundance then autoradiography performed.

SDS-PAGE and Western blotting

Whole cell extracts were generated using the following lysis buffer

(10 mM Tris at pH 8.0, 140 mM NaCl, 2 mM CaCl2, 0.5% v/v

NP-40, protease inhibitor cocktail [Roche] and 20mMN-ethyl mal-

emide [Fisher]). Cooled mouse lungs were lysed in an alternative

buffer (20 mM Tris at pH 7.5, 50 mM β-glycerophosphate, 0.5 M

EGTA, 0.5 M EDTA, 1% v/v Triton X-100, 14 mM β-mercaptoetha-

nol, protease inhibitor complex and 20 mM N-ethyl malemide).
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Protein was quantified by Pierce BCA or BioRad Bradford methods

and equal quantities size resolved by SDS-PAGE. Protein was trans-

ferred to nitrocellulose (GE Healthcare) and immunoblotted using

antibodies from Cell Signaling (eEF2, eEF2 T56-P, SUMO1,

SUMO2/3, Ubiquitin) Genetex (EXOSC8, EXOSC5, EXOSC3,

RanGAP1) Abcam (EXOC10, RBM3), Sigma-Aldrich (Flag, β-ac-

tin), Epitomics (NEDD8), Invitrogen (p53), Proteintech (CIRP)

and Bethyl laboratories (Dis3). Horse radish peroxidase conjugated

secondary antibodies were used coupled with chemiluminescence

(GE Healthcare). Quantification of protein expression was carried

out using Image J. Densitometry values are expressed in the text

with standard error given from at least n = 3. Densitometry is pre-

sented graphically in Supplemental Figure S2.

Determination of protein synthesis

Cells were incubated with 30 µCi/ml [35S]-methionine label

(Hartmann Analytic) for 30 min then lysed in standard protein lysis

buffer above. Trichloroacetic acid was added to a final concentra-

tion of 12.5% and precipitated protein captured on filter paper

(Whatmann), followed by washing with ethanol and acetone.

Scintilation (Ecoscint) was recorded from filters and standardized

to total protein content determined by BCA assay. Data represent

three independent experiments with the control condition set to one.

Denaturing His6 pulldowns

Transfected cells were lysed with protein lysis buffer as detailed

above and total protein quantified by BCA assay. Equal quantities

of protein (at least 1 mg) were rotated with 100 µL Ni-NTA aga-

rose beads (QIAGEN) under denaturing conditions as detailed pre-

viously (Leidecker and Xirodimas 2012). Following extensive

washing, elution of His6-tagged proteins used imidazole and SDS.

Pulldowns were analyzed by equivalent starting input protein quan-

tity and compared to original input protein lysates by SDS-PAGE

and immunoblotting.

Statistical analyses

Where required, all data were analyzed by two-sample unpaired

t-tests. A P-value <0.05 was considered statistically significant. In

most cases exact P-values are detailed in figure legends. Analyses ap-

proaching significance (P < 0.10) are highlighted within the text.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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