87 research outputs found

    Formation of metal-cyanide complexes in deliquescent airborne particles: a new possible sink for HCN in urban environments

    Get PDF
    Hydrogen cyanide is a ubiquitous gas in the atmosphere and a biomass burning tracer. Reactive gasses can be adsorbed onto aerosol particles where they can promote heterogeneous chemistry. In the present study, we report for the first time on the measurement and speciation of cyanides in atmospheric aerosol. Filter samples were collected at an urban background site in the city center of Padua (Italy), extracted and analyzed with headspace gas chromatography and nitrogen-phosphorous detection. The results showed that strongly bound cyanides were present in all aerosol samples at a concentration ranging between 0.3 and 6.5 ng/m3 in the PM2.5 fraction. The concentration of cyanides strongly correlates with concentration of total carbon and metals associated with combustion sources. The results obtained bring evidence that hydrogen cyanide can be adsorbed onto aerosol liquid water and can react with metal ions to form stable metal-cyanide complexes

    Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues

    Get PDF
    The cuticle, the outermost layer covering the epidermis of most aerial organs of land plants, can have a heterogeneous composition even on the surface of the same organ. The main cuticle component is the polymer cutin which, depending on its chemical composition and structure, can have different biophysical properties. In this study, we introduce a new on-surface depolymerization method coupled to liquid extraction surface analysis (LESA) high-resolution mass spectrometry (HRMS) for a fast and spatially resolved chemical characterization of the cuticle of plant tissues. The method is composed of an on-surface saponification, followed by extraction with LESA using a chloroform-acetonitrile-water (49:49:2) mixture and direct HRMS detection. The method is also compared with LESA-HRMS without prior depolymerization for the analysis of the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and a smooth cuticle in the distal region. We found that on-surface saponification is effective enough to depolymerize the cutin into its monomeric constituents thus allowing detection of compounds that were not otherwise accessible without a depolymerization step. The effect of the depolymerization procedure was more pronounced for the ridged/proximal cuticle, which is thicker and richer in epicuticular waxes compared with the cuticle in the smooth/distal region of the petal

    A Minimal Input Engine Friction Model for Power Loss Prediction

    Get PDF
    The minimization of friction losses in internal combustion engines is a goal of primary importance for the automotive industry, both to improve performance and to comply with increasingly stringent legislative requirements. It is therefore necessary to provide designers with tools for the effective estimation of friction losses from the earliest stages of design. We present a code for the estimation of friction losses in piston assembly that uses semianalytical models that require only strictly necessary geometric and functional inputs for the representation of components. This feature renders the code particularly suitable for the preliminary design phase. Furthermore, models ensure reduced computation times while maintaining excellent predictive capabilities, as demonstrated by the numerical-experimental comparison

    Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues.

    Get PDF
    The cuticle, the outermost layer covering the epidermis of most aerial organs of land plants, can have a heterogeneous composition even on the surface of the same organ. The main cuticle component is the polymer cutin which, depending on its chemical composition and structure, can have different biophysical properties. In this study, we introduce a new on-surface depolymerization method coupled to liquid extraction surface analysis (LESA) high-resolution mass spectrometry (HRMS) for a fast and spatially resolved chemical characterization of the cuticle of plant tissues. The method is composed of an on-surface saponification, followed by extraction with LESA using a chloroform-acetonitrile-water (49:49:2) mixture and direct HRMS detection. The method is also compared with LESA-HRMS without prior depolymerization for the analysis of the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and a smooth cuticle in the distal region. We found that on-surface saponification is effective enough to depolymerize the cutin into its monomeric constituents thus allowing detection of compounds that were not otherwise accessible without a depolymerization step. The effect of the depolymerization procedure was more pronounced for the ridged/proximal cuticle, which is thicker and richer in epicuticular waxes compared with the cuticle in the smooth/distal region of the petal.European Research Council (ERC consolidator grant 279405) the Herchel Smith fund the Gatsby Charitable Foundation BBSRC grant BB/P001157/

    A new method to assess the acute toxicity toward honeybees of the abrasion particles generated from seeds coated with insecticides

    Get PDF
    Background:Large amounts of insecticide-containing dusts produced from abrasion of the seed dressing can be released into the atmosphere during sowing operations. Neonicotinoid pesticides, introduced in the 1990s for several crops, are the leading products for seed-coating treatments in many countries. Neonicotinoid containing dusts can be effectively intercepted by bees in flight over the sowing field, inducing lethal acute effects, so that restrictions in the use of the main neonicotinoids have been adopted in the European Union. This led to the consequent introduc-tion of replacement insecticides for seed-coating, i.e. methiocarb and thiacloprid, despite the lack of information on both the toxicity and the exposure scenarios for honeybees. Results:In this study, a laboratory apparatus was developed in order to quantify the toxicity of the dusts produced from the abrasion of the seed coating. This quantification is based on (i) an airstream transporting coating particles into an exposure chamber; (ii) exposure of bees to reproducible and measurable concentrations of insecticide, and (iii) direct measurement of the exposure dose on single bees. The method allowed us to perform in vivo experiments of honeybee exposure to provide toxicity data in more realistic exposure conditions. In fact, the formulation rather than the active principle alone can be tested, and the exposure is through dusts rather than a solution so that specific absorption behavior can be studied in representative environmental conditions. The method was used to quantify the acute toxicity (LD50) of dusts obtained from the abrasion of corn seeds coated with clothianidin, thiacloprid and methiocarb. Conclusions:Our results show that, surprisingly, the replacement insecticide methiocarb has a toxicity (LD50= 421\u2013693 ng/bee) in the same order of magnitude as clothianidin (LD50=113\u2013451 ng/bee) through this specific exposure route, while thiacloprid (LD50= 16.9\ub7103 ng/bee) has a significantly lower acute toxicity. Moreover, dusts containing methiocarb and clothianidin show a significant increase in toxicity when, after exposure, bees are kept under high humidity conditions. This suggests that the method here presented can be used to obtain complementary toxicity data in the risk assessment procedure for the authorization of new seed-coating insecticides or new formulations

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport

    Get PDF
    With the exponential number of published data on neonicotinoids and fipronil during the last decade, an updated review of literature has been conducted in three parts. The present part focuses on gaps of knowledge that have been addressed after publication of the Worldwide Integrated Assessment (WIA) on systemic insecticides in 2015. More specifically, new data on the mode of action and metabolism of neonicotinoids and fipronil, and their toxicity to invertebrates and vertebrates, were obtained. We included the newly detected synergistic effects and/or interactions of these systemic insecticides with other insecticides, fungicides, herbicides, adjuvants, honeybee viruses, and parasites of honeybees. New studies have also investigated the contamination of all environmental compartments (air and dust, soil, water, sediments, and plants) as well as bees and apicultural products, food and beverages, and the exposure of invertebrates and vertebrates to such contaminants. Finally, we review new publications on remediation of neonicotinoids and fipronil, especially in water systems. Conclusions of the previous WIA in 2015 are reinforced; neonicotinoids and fipronil represent a major threat worldwide for biodiversity, ecosystems, and all the services the latter provide

    Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley

    Get PDF
    Abstract Metals in atmospheric aerosols play potentially an important role in human health and ocean primary productivity. However, the lack of knowledge about solubility and speciation of metal ions in the particles or after solubilisation in aqueous media (sea or surface waters, cloud or rain droplets, biological fluids) limits our understanding of the underlying physico-chemical processes. In this work, a wide range of metals, their soluble fractions, and inorganic/organic compounds contained in urban particulate matter (PM) from Padua (Italy) were determined. Metal solubility tests have been performed by dissolving the PM in water and in solutions simulating rain droplet composition. The water-soluble fractions of the metal ions and of the organic compounds having ligand properties have been subjected to a multivariate statistical procedure, in order to elucidate associations among the aqueous concentrations of these PM components in simulated rain droplets. In parallel, a multi-dimensional speciation calculation has been performed to identify the stoichiometry and the amount of metal-ligand complexes theoretically expected in aqueous solutions. Both approaches showed that the solubility and the aqueous speciation of metal ions were differently affected by the presence of inorganic and organic ligands in the PM. The solubility of Al, Cr, and Fe was strongly correlated to the concentrations of oxalic acid, as their oxalate complexes represented the expected dominant species in aqueous solutions. Oxalates of Al represented ∌98% of soluble Al, while oxalates of Cu represented 34–75% of the soluble Cu, and oxalates of Fe represented 76% of soluble Fe. The oxidation state of Fe can strongly impact the speciation picture. If Fe is present as Fe(II) rather than Fe(III), the amount of Cr and Cu complexed with diacids can increase from 75% to 94%, and from 32% to 53%, respectively. For other metals, the solubility depended on the formation of soluble aquo-complexes, hence with a scarce effect of the organic ligands. An iron-oxalate complex was also directly detected in aerosol sample extracts

    Sustainability of using vineyard pruning residues as an energy source: Combustion performances and environmental impact

    Get PDF
    Open burning of agricultural waste is still a common practice as it is a rapid method for waste disposal, although natural biomass, including agriculture residues, can be exploited as a renewable energy source. We assessed the viability and sustainability of using vineyard pruning residues, as wood chips, for energy conversion. Wood chips, obtained from vineyards in the Prosecco DOCG region (Italy), were characterized in terms of chemical composition, calorific value, ash content and humidity. Combustion tests were performed in a medium-size biomass boiler (maximum power 500 kW) to assess the viability of the approach in terms of sustainable steady-state combustion. Primary emissions of both macro- and micro-pollutants were measured to assess the environmental impact. An analytical method was purposely developed for the determination of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) and in three matrices: fly ashes, condensate and gas. The results showed that vineyard pruning residues can be used for energy conversion in medium- and large-scale biomass boilers. Primary emissions of measured pollutants were all below limit values set by current European legislation except for particulate matter, for which current available abatement technologies are required to contain emissions, abatement technologies are required to contain emissions, thus making the use of vineyard pruning residues unsuitable for combustion in domestic appliances where such technologies are not installed. Bottom ashes produced during combustion were also characterized to assess whether they can be recycled in the vineyard as soil amendments/fertilizer. Copper content in combustion ashes exceeded limit values for ashes to be used as fertilizers in agricultural fields for some European countries but not for others, indicating that ashes may need to be disposed as waste
    • 

    corecore