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Abstract

Metals in atmospheric aerosols play potentiallyraportant role in human health and ocean
primary productivity. However, the lack of knowlexlgbout solubility and speciation of metal ions
in the particles or after solubilisation in aqueausdia (sea or surface waters, cloud or rain
droplets, biological fluids) limits our understangiof the underlying physico-chemical processes.
In this work, a wide range of metals, their solubigctions, and inorganic/organic compounds
contained in urban particulate matter (PM) from lRadltaly) were determined. Metal solubility
tests have been performed by dissolving the PMaterwand in solutions simulating rain droplet
composition. The water-soluble fractions of the ah&ns and of the organic compounds having
ligand properties have been subjected to a muiditeastatistical procedure, in order to elucidate
associations among the aqueous concentration®eé tAM components in simulated rain droplets.
In parallel, a multi-dimensional speciation caltida has been performed to identify the
stoichiometry and the amount of metal-ligand comede theoretically expected in aqueous
solutions. Both approaches showed that the salylaifid the aqueous speciation of metal ions were
differently affected by the presence of inorgamc @rganic ligands in the PM. The solubility of
Al, Cr, and Fe was strongly correlated to the cobegions of oxalic acid, as their oxalate
complexes represented the expected dominant spetiesjueous solutions. Oxalates of Al
represented ~98% of soluble Al, while oxalates afr€presented 34-75% of the soluble Cu, and
oxalates of Fe represented 76% of soluble Fe. Kmaton state of Fe can strongly impact the
speciation picture. If Fe is present as Fe(ll) eathan Fe(lll), the amount of Cr and Cu complexed
with diacids can increase from 75% to 94%, and f8#%6 to 53%, respectively. For other metals,
the solubility depended on the formation of soluddgio-complexes, hence with a scarce effect of

the organic ligands. An iron-oxalate complex wa® airectly detected in aerosol sample extracts.
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1. Introduction

Despite air quality policies established worldwiddae progress in reducing airborne
particulate matter (PM) has been slow in recentsyeend PM still remains one of the major
polluting agents in the urban atmosphere, posisgbstantial burden for public health (Harrison et
al., 2010; Lelieveld et al., 2019; Raaschou-Nielgeal., 2013; Shiraiwa et al., 2017). According to
WHO about 90% of the world’s population live in asewith unhealthy air, leading to increased
mortality and morbidity (WHO, 2016). Air pollutiogontributes to total mortality more than
malaria and HIV combined on a global scale (Lelievet al., 2015) and represents the largest
environmental risk factor behind premature deaBsr{ett et al., 2018).

The majority of epidemiological studies have usedtipulate mass (PM or PM,5) as the
metric of choice, largely because of the availabitif monitoring data. However, this approach is
considered incomplete and can lead to an under@stimof PM risk (Harrison et al., 2010).
Despite toxicological studies have shown that cleahrtomposition may play an important role in
PM_ s-induced toxicity (Perrone et al., 2010), the chehspecies responsible for PM toxicological
properties remain a subject of investigation (Dadest al., 2017). The adverse health effects of
PM, scan be ascribed to polycyclic aromatic hydrocark@#sHs) and their nitrated or oxygenated
(e.g. quinones) derivatives (Giorio et al., 201%ag, primary biogenic fraction, such as pathogenic
bacteria and bacterial endotoxins (Franzetti efll1; Topinka et al., 2011), and water soluble PM
fractions such as water soluble organic (WSOC)iaaganic compounds, and metal ions like Zn,
Pb and Ni (Birmili et al., 2006; Chen and Lippma009; Oberdorster et al., 2005; Zhang et al.,
2015). The toxic effects caused by Al, Fe and Qulmalso important, as these ions represent the
major metal components in PM arising from differsotirces (Deguillaume et al., 2005).

The bioavailability, rather that the total concatitn, of pollutants released by PM in water,
as it occurs on the lung surface after inhalatisrexpected to correlate with the observed toxic
effects. In turn, the bioavailability of each compd strongly depends on its chemical speciation,
i.e. on the chemical form by which it is dissolvedsolution. As many WSOC and inorganic
compounds have coordinating properties towards Imetss, bioavailability depends on the
stoichiometry and stability constants of the compteformed in solution between the metal ions
and the ligands contained in PM, after PM entete sontact with water (Giorio et al., 2017;
Scheinhardt et al., 2013; Wei et al., 2019). Theefa more complete risk assessment of PM
requires not only the knowledge of the total coticgion of all compounds contained in PM, but
also of the stoichiometry of the metal-ligand coexals formed, and of their concentration. This
"speciation” approach has been introduced in adomahtal review by Okochi and Brimblecombe,

(2002). However, detailed investigations on thigicare scarce. The majority of the studies relate
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the speciation of the PM metal ions with ligandeeatly present in the environment (marine
environment or surface waters), whereas only very $tudies consider ligands present in the
aerosol particles themselves (DePalma et al., 2Blzinga et al., 2011; Jickells et al., 2005; Patis
al., 2011; Paris and Desboeufs, 2013; Schroth .et28D09; Wang et al., 2007). A study from
Scheinhardt et al. (2013) suggested that metatdigateractions may be an important phenomenon
in deliguescent aerosol in the urban atmosphergh@garticles travel deeper into the respiratory
system, consisting of wet walled respiratory trattiey encounter increasing humidity: ~40% in the
mouth, ~60% in the pharynx, to finally approachimgar water saturation ~99.5% in the deep
airways. Hygroscopic particles moving from a regmfnlow ambient humidity into one of high
humidity would be expected to increase in size doewater uptake and this will favour
coordination chemistry (Tong et al., 2014).

The northern Italian Po Valley, a semi-closed basimrounded by complex orography,
represents a natural laboratory for studying agsigghase processing of aerosol. It is one of the
major European air pollution hotspots and enviromi@leconditions favour fog events during the
winter. In this work, an urban PM (Padua, Italy)swsaubjected to a chemical characterization in
order to identify and quantify the most relevantah@ns and inorganic/organic compounds. Metal
content has been determined by inductively coupladma mass spectrometry (ICP-MS), whereas
organic/inorganic ligands have been measured byclhwomatography (IC). Metal solubility tests
have been performed by dissolving the PM in wated @ solutions simulating fog/rain
composition. The water-soluble fractions of the ah&ins and of the inorganic/organic compounds
having ligand properties have been subjected taubivariate statistical procedure. In parallel, a
multi-dimensional speciation calculation has beerfggmed to evaluate the stoichiometry and the
concentrations of metal-ligand complexes expectec&queous solutions. For those complexes
expected at higher concentrations their detectiag also attempted by nano electrospray ionisation

high-resolution mass spectrometry (nanoESI-HRM$®gstigations.

2. Experimental

2.1 Chemicals and standard solutions
All reagents were of analytical grade and were w@sedurchased: 69 % HNQPROLABO,
Milan, Italy), multi-element standard solution NGPMS-71A (10 mg L) ICP-MS calibration
standard (Inorganic Ventures, Christiansburg, VAZ31 USA). All solutions were prepared in

ultrapure water obtained with a Millipore Plus Syst(Milan, Italy, resistivity 18.2 cnmi?).
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Primary standards for IC analysis were of analytgpade and purchased from Sigma-
Aldrich®. Methanol (Optima™ LC/MS, Fisher Chemicalas used for washing and sample
extraction for nanoESI-HRMS analysis.

2.2 Aerosol sampling

Teflon filters (PALL, fiberfilm, @ 47 mm) were pmwashed with large amounts (~250 mL for
all filters used) of ultrapure water for three tsnender ultrasonic agitation for 15 mins, changing
water each time. Quartz fibre filters (MilliporeQ¥A, @ 47 mm) were decontaminated by baking
them at 600 °C for 24 h.

PM, s samples were collected (sampling time 24 h, frén®0 to 24.00) at the sampling site
located at the B floor of the Department of Chemical Sciences ef thiversity of Padova (ltaly),
using a Zambelli Explorer Plus PM sampler, fittethwa PM s certified selector (CEN standard
method UNI-EN 14907), and working at a constanwftate of 2.3 mh* (Giorio et al., 2013) from
the 8" December 2013 to the'Wpril 2014, alternating Teflon and quartz filtgsee Table S1 in
the supplementary material for details).

Weighing of the filters was done for Teflon filteanly, before and after sampling, after
conditioning at a temperature of 20 + 1 °C andtnetahumidity of 50 = 5% for at least 48 h, as in

previous studies (Giorio et al., 2013, 2019b).gfigamples were then stored at -20°C until analysis

2.3.Sample Preparation

Teflon filters were manually cut into three parted parts of ¥4 and one part of ¥2) by a
stainless-steel cutter. The use of a stainles$-stéter did not cause contaminations for the metal
determination, as checked by analysis of procechlealks. For each sample, ¥ filter was treated
with 2 mL of 69% nitric acid using a CEM DiscoveP-® (CEM Corp., Matthews, NC, USA)
microwave digester at 400 psi and 300 W, with aperature ramp from 20 °C to 200 °C in 4 min,
and maintained at the final conditions for 2 miheTsolution was diluted to 3.45 % w/w nitric acid
before analysis by ICP-MS. Another Y4 filter wasragted in 5 mL of a pH 4.5 water solution of
H,SO, at 20°C, simulating fog/rainwater (Beiderwiederaket 2005; Nieberding et al., 2018; Rodhe
et al., 2002; Walna, 2015; Wang et al., 2012),24in without stirring. After that, 4 mL of solution
were taken and concentrated HN@®9%) was added to obtain a concentration of 3&46wv/w)
HNO; for ICP-MS analysis. Another Y% filter was extratta 5 mL of ultrapure water at 20°C for
24h without stirring. After that, 2 mL were takemddfiltered with 0.45 pm syringe filters (Millex®-
HV, PVDF, @ 4 mm) before IC analysis. The other B were taken, and concentrated HN@as
added to obtain a concentration of 3.45 % (w/w) HX# ICP-MS analysis.

Quartz fibre filters were extracted according te firocedure already described elsewhere

(Kourtchev et al., 2014) before analysis with naBbHRMS. For each filter sample, the outer ring
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of the filter, which had been in contact with tlileef holder during sample collection, was removed
to prevent contamination and a portion of the ffifthe whole filter in the case of blanks and ¥ in
all other cases) was cut into smat.(25-100 mm) pieces and placed in a glass vial. The pieces of
guartz filter were then covered with 5 mL of metblaand extracted by ultrasonic agitation for 30
minutes in slurry ice. The resulting methanol estsavere then transferred to a new pre-cleaned
vial and concentrated via evaporation under a gesiteam of nitrogen (BOC, Guildford, UK) to
ca. 2 mL on a hotplate (SD160, Stuart, Stone, UK)jclwhwas kept at 35°C. The concentrated
extracts were filtered through two syringe PTFEefg (ISO-Disc™, Supelco, with pore sizes of
0.45 um and 0.22 um). The filtered extracts weea ttoncentrated further, by evaporation under a
gentle stream of nitrogen, t@. 0.1 mL and kept in a washed glass vial at -20°arkigess until
analysis.

For each analysis type, procedural blanks (unexpdsiers) were also obtained and

analysed.

2.4 Instrumental Analysis

2.4.1. Analysis of metals with ICP-MS

All elements were determined by using an ICP-MSilgkg 7700x, Agilent Technologies,
Santa Clara, CA, USA). The operating conditions dath acquisition parameters are reported in
previous studies (Badocco et al., 2014; Gioriolet2®19b). The ICP-MS was tuned daily using a
1 ug L™ tuning solution containind*®Ce,>°Co, ‘Li, 2°°Tl and®°Y (Agilent Technologies, UK). The
ratio 156/140 representing CeO/Ce is tuned to apmeately 1% or less. The ratio 70/140
representing C&/Ce is maintained below 3%. A 5@ L™ solution of**Sc and*n (Aristar®,
BDH, UK) prepared in 3.45 % (w/w) nitric acid wased as an internal standard through addition
to the sample solution via a T-junction.

Multielement standard solutions were prepared #b 3% w/w HNQ. The calibration
solutions were prepared by gravimetric serial @lutfrom multi-element standard solutions in the
range between 1 ng'tand 1 mg [*. The detection limit of each element was deterchinging five
concentration levels replicated nine times. Blaakgles of ultrapure water and reagents were also
prepared using the same procedures adopted feathples.

2.4.2. Analysis of soluble inorganic anions and short-chaiorganic acids

Instrumental analysis was performed by injectingl@0 of water extracts in a Dionex IC
system equipped with an a GP50 Gradient Pump, adDEBuent generation system fitted with a
Dionex EGC Il KOH RFIC™ eluent generator cartridgga LC25 oven, and an ED40
Electrochemical Detector (in conductometric detectmode), and fitted with a Dionex lonPac

6
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AG11-HC (2 x 50 mm) guard column, a Dionex lonP&l1A-HC (2 x 250 mm) chromatographic
column, and a Dionex AERS 500 (2 mm) self-regeimegasuppressor (suppression current
100 mA). Chromatographic separation was achievedash temperature (~20 °C), with a flow rate
of 300 uL/min, and elution gradient: 0—3 min 3 mMNDHK, 3-5 min linear gradient from 3 mM to
10 mM KOH, 5-12 min linear gradient from 10 mM t6 &dM KOH, 12-20 min 20 mM KOH,
20-24 min linear gradient from 20 mM to 40 mM KOHda24-35 min 40 mM KOH. Equilibration
time at the beginning of each chromatographic ras Wmin.

External calibration was performed daily with stardisolutions in the range 0.1-50 mg/L of
each analyte in ultrapure water prepared from Blatarimary standards purchased from Sigma-
Aldrich®.

2.4.3. nanoESI-HRMS analysis

Samples were analysed using a high-resolution LTQit#@p mass spectrometer (Thermo
Scientific™, Bremen, Germany), with a mass resgypower of 100,000 atvz 400 and a typical
mass accuracy within 2 ppm, equipped with a claped nanoESI source (Triversa NanoMate
Advion, Ithaca, NY, USA) operating in both positi@ed negative ionisation mode.

Samples were sprayed at a gas) (pressure of 0.90 psi, ionisation voltage of -\ in
negative ionisation mode and gas pressure of 0sBOignisation voltage of 1.8 kV in positive
ionisation mode, and with a transfer capillary tenspure of 210 °C as used in previous studies
(Giorio et al., 2015, 2019a; Kourtchev et al., 2014

For each sample, data were acquired in full scahanm/z ranges 100-650 and 150-900 for 1
minute each in both positive and negative ionisatrmdes. The mass spectrometer was calibrated
routinely using a Pierce LTQ Velos ESI Positive IGalibration Solution and a Pierce ESI
Negative lon Calibration Solution (Thermo Fisher).

The averaged spectra for each sample and eachiestge were then exported as a binary list
of m/z values and peak intensities using the propriesoftware Xcalibur™ 2.1 (Thermo
Scientific™, Bremen, Germany). Exported data wene@ssed using a code writtemhouse to
isolate signals attributable to metal-ligand compte of interest based on their exact mass and
isotopic pattern and taking into account also tbesgbility to form adducts with the most common

anions and cations present as impurities in theegats.

2.5 Statistical analysis

Limits of detection (LODs) of both IC and ICP-MS aserements were evaluated using a
two-component variance regression using the ordileast squares (OLS) regression as detailed in
previous studies (Badocco et al., 2015a, 2015b).

7
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Data have been statistically analysed through &-fBskey's test, analysis of variance
(ANOVA), and principal component analysis (PCA)ngsithe software Statistica 7 (StatSoft Inc.,
Tulsa, OK). A 95% significance level was considei@dall statistical tests.

2.6.Speciation calculations

The concentration of each metal-ligand complex wasulated at the given pH value by
means of the software PITMAP (Di Marco, 1998). Byiemass balance equations are solved, i.e.
species concentration at equilibrium are obtaibgdneans of the Newton—Raphson method (Press
et al., 2007). The metal ions and ligands, and tt@ncentrations were chosen on the basis of the
analytical results obtained in the previous sestidrhe input thermodynamic data (stoichiometry
and stability constant of the complexes, includimgtal-aquo-complexes) have been obtained from
the literature (ScQuery v.5.84, 2005). All metalnsoand ligands were considered to be
simultaneously present in solution, in order toaabta speciation picture which includes all

competitive components in solution.

3. Results and discussion

3.1PM, s composition

Atmospheric conditions during the sampling campaigrere characterised by low
temperatures, close to 0°C during the first parttied campaign and reaching a maximum
temperature of 14°C toward the end of the campdiggh relative humidity (RH), often above
90%, and high aerosol loading with PMconcentrations ranging between 12 and 113 jigm
(Figure 1, Table S1 and Table S2). Such conditfansur aqueous phase processing of aerosol
particles and fog events which create a suitable&r@mment for coordination chemistry to occur.
PM, s concentrations were in the range of those obseirvedher northern Italian cities, such as
Bologna in which average P values were in the range 31-59 pg in the years 2011-2013
(Pietrogrande et al., 2014), and Milan in whichrage PM s concentrations in the winter were 60
g m° in the years 2006-2009 (Perrone et al., 2012).rékelts of the ion chromatography analysis
(Figure 1, Table 1 and Table S3) show that niteatte sulfate are the main contributing species in

our samples, as expected (Giorio et al., 2013, 2017
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3.1.1. Organic acids

Short-chain dicarboxylic acids, i.e. oxalate, snat®, and malonate, represent abundant
components in our samples. These compounds havabihg to act as ligands for metal ions
present in PMs and therefore could affect their solubility. Thegn be produced by atmospheric
oxidation of a wide range of volatile and non-vidatorganic compounds of both natural and
anthropic origin through gas and condensed phasivity (Kawamura and Bikkina, 2016; Sareen
et al., 2016). As expected for a continental adrasa@late is the diacid present with the highest
concentration in our samples. The median conceémtiatof dicarboxylic acids (Table 1) in this
sampling campaign were 217 ng’nfor oxalate, 19 ng i for malonate, and 57 nginfor
succinate. These values are in line with thosedaarBologna, Italy, another city in the Po Valley,
in which average concentrations of malonate wetkérrange 21.7-29.7 nghand concentrations
of succinate were in the range 26.8-112.1 fiimthe years 2011-2013 (Pietrogrande et al., 2014)
The concentration levels were not far also fronséhfound in Hong Kong in the years 2000, where
average values were around 360 ng 80 ng nT, and 60 ng i for oxalate, malonate and
succinate, respectively (Yao et al., 2004), and320Ben concentration values ranged between 179-
2372 ng nt, 38-324 ng i, and 35-297 ng ihfor oxalate, malonate and succinate, respectitély
and Yu, 2005).

The ratio of malonic to succinic acid <1 for thejondy of the campaign indicates a rather
freshly emitted organic aerosol from vehicularftcafather than photochemically aged (Yao et al.,
2004). Succinate may be formed also by oxidationrn#aturated fatty acids emitted with sea spray
(Kerminen et al., 2000) and the presence of methdfomic acid (MSA) in our samples suggests
that atmospheric transport is taking marine biogennissions to our inland urban location (Yao et
al., 2004). Therefore, a marine contribution tocsu&te cannot be ruled out and the organic aerosol
may be more photochemically aged than predicteth ftbe malonic to succinic acid ratio. A
median ratio of acetic to formic acid of about in8icates a secondary origin of carboxylic acids
rather than from primary emissions (Grosjean, 198yma et al., 2012).

Concerning monocarboxylic acids, median concewinatin our samples were 9.8 and 17.0
ng m° for acetate and formate, respectively, higher thanand 0.71 ng thfound in Morogoro,
Tanzania (Mkoma et al., 2012). Formate concentrativere lower than those found in the US in
Los Angeles (49 ng i) and Atlanta (39 ng i) in the summer of 2010 (Liu et al., 2012). Both
formate and acetate concentrations were lower tth@se found in urban and rural R¥in Spring
2007 in Londrina, Brazil (Freitas et al., 2012).
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Figure 1. Meteorological conditions (a), PMs concentrations (from both the present study and tbé Regional
Environmental Agency, ARPAYV), nitrate and sulphate concentrations (b), dicarboxylic acids and nitrite
concentrations (c), and other anion concentrationgd) in PM,s during the sampling campaign from the #'
December 2013 to the sl April 2014. Lat™ = lactate, Ac = acetate, For = formate, MSA = methanesulfonate, Sti

= succinate, M& = malonate, OX = oxalate.

Table 1. Median, maximum, 78 percentile, 28" percentile and minimum concentrations (ng ni) of the
inorganic and organic anions (ordered according taheir retention times) determined in PM, 5 in the winter
campaign (8" December 2013 to St April 2014, N=20). Laf = lactate, Ac = acetate, For = formate, MSA =
methanesulfonate, Sti = succinate, M& = malonate, OX = oxalate. Measurement uncertainties are between 2

4%.

Lat” Ac For MSA CI NO,  NOj S Ma* SO* Ox* PO*
Median <LOD 9.8 170 17.0 239 72 62321 57.0 18.8 276%96.9 8.8
Max 625 831 67.5 809 806.2 413.3 43207.3 337.7 8P6345 864.2 33.8
75" perc. 25 342 296 455 1172 142 15007.0 135.1 33.05842 350.7 17.9
25" perc. <LOD 4.3 93 111 28  3.01 29264 17.8 17.0 1727.33.3 <LOD
Min <LOD <LOD <LOD 50 <LOD <LOD 8781 <LOD 16.3 2587 27.7 LGD

3.1.2. Metals

Table 2 shows the total concentration of each n{&la) determined in PMs, as median of

20 samples, together with the median soluble fpastin water (M) and in water at a pH of 4.5

(M) simulating fog/rainwater. Data for each indivilgample are reported in Tables S4-S9. The

elements present at the highest concentrationgrisamples are Na, K, Fe, Zn, Mg, Ca and Al. The

soluble fractions, however, do not follow the satrend likely because the solubilisation is

influenced by their speciation in the PM matrixelfse.g. compound of origin and oxidation state

10
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of the metal, and in solution. In general, the Blddraction is larger at pH 4.5, simulating a fag
rainwater, rather than at autogenic pH (measuredartded between 4.5 and 5.6, median value
5.0). Autogenic pH for some samples was close tequal to, a value of 4.5 and therefore the

soluble fractions M and My were the same within uncertainty.

Table 2. Limits of detection (LODs), median concemations (total amount, M+), percentage of solubilisation at
autogenic pH (My) and at an acidic pH of 4.5 (M) of the elements present in PMs samples collected from the
5" December 2013 to the 1 April 2014. Measurement uncertainty is <5%(Badocco et al., 2015a)

Element LOD M+ My M a
(ng m®  (ng m°) (%) (%)
Ag 0.27 <LOD
Al 0.10 82 11 14
As 0.0070 1.2 28 40
B 0.35 570 1 1
Ba 0.083 16 0 29
Be 0.23 <LOD
Ca 0.39 33 52 82
Cd 0.0080 0.55 26 39
Ce 0.011 0.12 4 7
Co 0.0040 0.14 7 9
Cr 0.0060 2.2 13 19
Cs 0.010 <LOD
Cu 0.0050 11 24 35
Eu 0.0067 <LOD
Fe 0.27 240 6 11
Ga 0.012 3 0 24
Gd 0.013 <LOD
K 1.0 404 60 83
La 0.0030 0.06 4 6
Mg 1.1 a7 11 54
Mn 0.030 7.4 29 42
Na 0.25 n.d.* n.d.* n.d.*
Nd 0.0040 0.027 2 1
Ni 0.16 <LOD
P 2.8 8.9 33 59
Pb 0.0060 12 6 12
Pr 0.0010 <LOD
Rb 0.0070 0.94 53 76
Se 0.056 0.33 41 56
Sm 0.0040 0.004 8 17
Sr 0.0030 0.58 34 55
Th 0.0075 <LOD
Tl 0.0030 0.031 49 65
U 0.013 <LOD
Vv 0.011 1.03 41 61
Zn 0.011 48 79 78

*n.d.=not determined, due to contaminations of klfiters

Concerning the total amounts of metals in;2ZMhe values found in the present study were
around the same order of magnitude as in othemudzations in Europe. For example, Fe median
concentration was 240 ngrin this series of samples, which is slightly higiiean 71.5-206.3
ng m° found at five sites in the Netherlands (Mooibrastkal., 2011), within the range 54-457
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302 ng m° found in three sites in Poland (Rogula-Kozlowskale 2014), and within the range 0.09-
303 1152 ngn¥ found in rural background sites across Europe (orat al., 2015). Cu median
304 concentration was 11 ngin this study, within the range 5-81 n¢’rfound across urban sites in
305 Spain (Querol et al., 2008), slightly above thegear?2.5-10.9 ng i found at five sites in the
306 Netherlands (Mooibroek et al., 2011), higher thia@ 2.8 ng i in an urban site in Birmingham
307 (UK) (Pant et al., 2017) and 0.08 ng’rim Naples (Italy) (Chianese et al., 2019), wittte range
308 0.10-58 ng rit found in rural background sites across Europe {Fomt al., 2015). Zn median
309 concentration was 48 ngrin this study, not far from the concentrations424 ng nt found
310 across Spain (Querol et al., 2008), 90.5-99.5 Hganfive sites in the Netherlands (Mooibroek et
311 al., 2011), 14.1 ngtin an urban site in Birmingham (Pant et al., 2017).3-42.4 ng i in
312 Naples (Chianese et al., 2019) and 1.1-79.5 igmiural background sites across Europe (Fomba
313 et al., 2015). Ba and Cr median concentrations Wérand 2.2 ng i respectively in this study.
314 These values are within the range 12-41 and 2-28hépund across urban sites in Spain (Querol
315 et al., 2008) for Ba and Cr, respectively, and #15and 2.7-3.7 ng thfound at five sites in the
316 Netherlands (Mooibroek et al., 2011) for Ba and i€gpectively. Al median concentration of 82
317 ng m° of this study is within the range 31-457 ng rfound in three sites in Poland (Rogula-
318 Kozlowska et al., 2014). Pb, As and Cd median coimaions of 12, 1.2 and 0.55 ngm
319 respectively, found in this study are close todbecentrations reported in the review by Csavina et
320 al. (2012) for sites affected by smelting and mynaperations.

321
322 3.2 Correlations between metals and organic ligands
323 In order to investigate the influence of the preseof organic ligands on the solubilisation of

324 the elements a Pearson correlation test was usecheBts to be considered for this purpose were
325 selected using the ANOVA test. We selected only ¢fements that had a sample-to-sample
326 variance larger than the variance of the analytmahsurement and a concentration value higher
327 than the LOD in at least the 70% of the samples= (RD). Selected elements for further analysis
328 were: Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, kd.a, Mg, Mn, Nd, P, Pb, Rb, Se, Sm, Sr, TI,
329 V, and Zn An example of the results of the correlation asialys reported in Table 3. The soluble
330 fraction of Fe (in percentage) is significantly iated with organic species that have ligand
331 properties. The significance follows the order axebsuccinate>malonate. A similar result was
332 obtained for Cu, while Pb is significantly correldtwith oxalate. Solubility of Zn does not seem to
333 be influenced by the ligands while phosphate mélyence the solubility of Pb but not that of Fe,
334 and Cu. This is further discussed in the secti@n 3.

335
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336

Table 3.p-values of the Pearson correlation tests between the soligbfraction of the elements at autogenic (M)

337 and acidic (M,) pH and selected ligands. Su= succinate, M& = malonate, O% = oxalate.
S’ Ma® Ox* PO~
Zny 066 058 050 047
Zn, 070 0.60 054 0.52
Fe, <10* <10° <10° 0.19
Fen <10* <10° <10° 0.26
Cuy <0.05 0.01 <0.05 0.68
Cuy 0.03 004 001 0.64
Pby <0.05 0.22 <0.01 <0.01
Pb, <0.05 049 0.05 <0.03
338
1.0 - 8
- Mg ca a 11/03 b
A n .
) ' For 9 6
0.5 /§94 Ma :
’ Ox
X X 4
g 03 pgg Co o
<
T. 00 Né@ L 1%,
o Cu & 2| 4g/03 15/03
O r, A O
o spad - o 208310429 %6185, .
0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —16/01— %@3,,_
A / 22/ 3283
v
2 10148101 22/01
- 7 15/12
A8 -0.5 0.0 0.5 1.0 -8 6 -4 -2 0 2 4 6
4 PC1:45.6% PC 1:45.6%
i T T
e g U R Cc 12 20/03 d
g 10 |
0.5
; 8
R Cr o X
S ; Fes Se Ri ] ::l 6
o~ YOS AC po4 ca i | N 4 ;
O  [MsA A 19 16/01
o Pb AsCd e f
> Sr 2 110081
2003 o503
e ol.18/93 27/03,23/02
"""" 1503 "9"1”,)4 18/02 22701
- 10/01,10/125/1 29/0&5/03
1.0 -0.5 0.0 0.5 1.0 -8 -6 -4 -2 0 2 4
339 PC1:24.4% PC 1:24.4%
340 Figure 2. Loadings (a) and scores (b) of the PCA aped to the total element concentration together vth all
341 organic and inorganic anions, and loadings (c) andcores (d) of the PCA applied to the soluble fraai of the
342  elements in water (My/M+) and in water at pH 4.5 (Ms/M1). For clarity only soluble metals in water at pH 45
343 are reported in panelc because the two fractions are always superimposéa the plane defined by the first two
344  PCs with the exception of Cr for which the solubldraction in water at autogenic pH is not explainedoy the first
345  two PCs.
346
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Experimental data were additionally subjected t®@A to look for possible association
between the elements and the organic ligands thatfacilitate their solubilisation and therefore
enhance their bioavailability. For the PCA we cdased all organic and inorganic anions listed in
Table 1 and Table 2, and the elements selectedghrthe ANOVA test excluding Ba, B, La, Ce,
Nd, Sm, Tl and U because present at concentratiolysslightly above the LOD.

Figure 2a and Figure 2b show the loading and sglots referred to the PCA applied to the
total concentration of metals. The first two prpadi components (PCs) explain ~60% of the
variance. The loading plot (Figure 2a) shows thatdlements can be divided into two groups: the
first group correlates with PC1 and all ligands lethihe second group, made of Ca, Mg, Sr and Zn
which are characterised by a high solubility (Tablecorrelates with PC2.

Figure 2c and Figure 2d show the loading and splots referred to the PCA applied to the
soluble fractions of the metals at autogenic pHHM-My/M+) and pH 4.5 (M-A = M/M~). The
first two principal components (PCs) explain on#§6% of the variance. The additional PCs did not
bring any information on correlations between stdubetal ions and organic ligands, so they are
not reported in this study.

The loading plot (Figure 2c) shows that the soldldetion of Fe, both in water and at pH
4.5, is basically superimposed to oxalate, andther dicarboxylic acids (succinate and malonate),
which is in agreement with a previous study on dedasts (Paris and Desboeufs, 2013). PC1
indicates that the elements whose solubilisatiomast influenced by the presence of the organic
ligands are Fe and Pb. Differently, the solubii@atf Cu, Mn and V are explained also by PC2.
Very soluble metals such as Zn, K, Rb, Mg are ehgst toward the top part of the plane defined by
the first two PCs and strongly correlated with PG2, Ca and Al cluster together toward the
bottom-right of the plane defined by the first tRGs. These elements are of crustal origin and may
be present either in a rather refractory chemimahf(Al) or be readily soluble (Ca, Sr) so thatithe
solubilisation is not much influenced by the orgacdmponent, but it may be influenced by other
processes (e.g. hydrolysis). Similarly, Cr-A seg¢mbe only slightly influenced by the presence of
the dicarboxylic acids while Cr-H is close to thesaorigin and so it is not explained by the first
two PCs.

The score plots (Figure 2b and Figure 2d) show tietsamples collected on the™and
18" March 2014 are those with the highest concentratisf metals, highest soluble fraction and
highest concentration of organic ligands. These tiays were characterised by high PM
concentrations but also high RH (Figure 1).
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3.3.Speciation in solution

The speciation of an aqueous solution represaastgjtalitative and quantitative composition
of the solution at the given experimental condgioSpeciation depends on temperature, pH, and
concentrations of the system components. When tenye and pH are fixed, the speciation of a
given metal ion M" depends on its concentration, on the concentratfaall ligands in solution
which can bind M, on the concentration of all other metal ionsdluson which can compete with
the ligands of M, and also on the concentration of all ligands Whido not bind M* but bind the
competitor metal ions. A reliable speciation moidelM™ can therefore be obtained only if all the
solution components having binding ability are taketo account, and if stability constants of
formation of the complexes are known.

A database was built, which includes the companeith complexing ability detected in the
soluble fractions of the PM (see Table 1 and T&)leThe inorganic and organic compounds
included in the database are reported in Tablargt (low). Monocarboxylates (acetate, formate)
and methylsulfonate, although detected in the PMbse fraction (Table 2), were not included in
the database due to their low concentration int&mluand especially because they are very weak
complexing agents for all metal ions. Thereforegirtreffect on metal ion speciation can be
considered negligible. Other potentially very imot ligands present in the aerosol, however not
determined in this study, are humic-like and fulke substances. These polyfunctional
macromolecules are powerful chelating agents (Btagand Navea, 2015; Willey et al., 2000; Win
et al., 2018) but, at present, their molecular ati@risation, consequent information on the
stoichiometry of the complexes and their stabitibyistants is far from complete. These substances,
together with microbial proteins, may also be pnés&s siderophores in atmospheric aqueous
phases and may affect metal ion solubilisation femrosol particles (Cheize et al., 2012; Vinatier
et al., 2016). The metal ions included in the dasabare reported in Table 4 (first column). For the
speciation calculations, each metal has been ceresldo be dissolved at only one oxidation state.
If more oxidation states would exist for a giventahethe most stable one at environmental
conditions was chosen for the speciation calculatidFor example, Fe was considered to be
dissolved only as B& Cu only as Cti. In the case of Fe, however, additional speciation
calculations were performed considering that thistainis only in the oxidation state +2. The
chosen oxidation states are explicitly stated enfitst column of Table 4. Not all elements detdcte
in the PM soluble fraction (Table 1) have beenuded in the database. In particular, alkaline metal
ions (Nd, K*, Rb") have been excluded as they do not display amikecicomplexing ability
towards ligands in agueous solutions. Some elemeataely V, As, and Se, are likely present as
oxo-compounds in their most stable oxidation stgt€s, +5 and +6, respectively), but only
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vanadates have appreciable coordinating abilit@satds ligands and were included in the
database. The acidity constants of the ligands+Higand), and the stability constants of metal
hydroxocomplexes (metal + OHwere included, as Hand OH compete with the metal ions and
with the ligands, respectively, in the complex fatian.

The IUPAC stability constant database was usedhassource of thermodynamic data
regarding metal-ligand complex formation (ScQuerys.84, 2005). Table 4 reports the
stoichiometry and the stability constants of thetalkkgand complexes formed for each metal-
ligand pair. Many different speciation models (famation constants in different aqueous media)
were often reported in the literature for each gineetal-ligand pair: the model chosen as the most
reliable (reported in Table 4) was the one obtainealgueous solutions at the lowest level of ionic
strength, which better resembles atmospheric wditases such as fog and rain waters (Scheinhardt
et al., 2013). No mixed complexes (one metal iomve ligands, or one ligand + two metal ions)
were included in the database, with the exceptidmpsotonated- and hydroxo-ligand complexes.

Speciation calculations have been performed onbésEs of the thermodynamic model
reported in Table 4, using the metal and ligancceatration data of the sampled PM fractions. The
calculation was performed for all sampled solutionasidering metal solubility in diluted sulfuric
acid solution at pH 4.5, simulating fog and rainevaiTable 5 reports the speciation data obtained
for the PM sampled on TQJanuary 2014. Data are reported as percentagachfraetal species
relative to the total soluble amount of the saméam&imilar tables were obtained for all other
samples, but results do not differ significantlgnfr those reported in Table 5 which can therefore

allow us to draw general conclusions.
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436 Table 4. Inorganic/organic ligands and metal ions ansidered for the calculation of the speciation irPM-containing water solutions. Concerning Fe, speation

437  calculations were performed considering two scenaws in which Fe is present only as Béor only as Fé". Ox = oxalate (GO,%), Ma = malonate (GH,0,*), Su =
438  succinate (GH404%). The most reliable thermodynamic model (stoichiomtry and stability constants of the complexes) iseported for every metal-ligand couple as
439 obtained from the lupac Stability Constant database(ScQuery v.5.84, 2005). Stability constants are \@n as logf) and they refer to the general reactions
440 mM+4L+hH = ML Hy. Charges of the complexes are omitted for simpliti.
ligands cl- NO; PO> SO~ Oox> Ma* Su- OH~
metal ions
AlH PO, 19.65 AlISO,3.84 |AIHOx 3.84 |AlMa 7.49 AlHSu 7.03 AIOH -5.53
AIHPO, 17.7 Al(SO,), 5.58 | AlOx 6.97 Al(Ma), 12.62 | AlSu 3.63 Al(OH),-11.3
Al®* - - AlIPO,4 13.5 Al(Ox), 12.93 AISUOH -0.53 | AI(OH);-17.3
AIPO,OH 8.37 Al(Ox); 17.88 AISu(OH), —5.55 | Al(OH), —23.46
AlL,PO, 17.42
+ CaCl 0.42 CaNg©O0.6 CaHPQ13.98 CasS©2.19 CaOx 2.08 CaMa 2.50 CaHSu 6.18
cd CaSu 1.20 -
CdCl 1.98 |CdNG;0.40 CdHPQ15.19 CdsQ2.35 CdOx 2,52 |CdMa 2.64 CdSu 2.03 CdOH -9.80
cd* CdCL 2.64 Cd(Ox), 4.20 Cd(OH), -20.19
CdCk 2.3
CoCl0.60 |CoNO;-0.46 |CoHPQ 14.56 CoSQ@2.51 CoOx 3.21 |CoMa2.92 CoSu 2.96 CoOH -8.23
Co CoCL0.02 |Co(NGy),-0.30 Co(Ox) 5.93 |Co(Ma), 4.60 Co(OH), -17.83
CoCk-1.71 Co(Ma) 5.30
CoCl, —4.51
CrCl-1.0 CrNQ-1.91 CrPQOH 8.12 CrsQ, 1.6 CrOx 5.34 CrMa 7.06 CrSu 6.42 CrOH -4.29
cr CrPQ,(OH), —-1.92 Cr(Ox), 10.51 |Cr(Ma), 12.85 | Cr(Su) 10.99 Cr(OH), -9.49
CrPQ,(OH); —14.34 Cr(Ox); 15.44 | Cr(Ma); 16.15 | Cr(Su} 13.85 Cr(OH); —18.00
CuCl0.83 |CuNG;0.44 CuHPQ15.67 CusSQ2.27 CuOx 4.60 |CuMab5.13 CuSu 3.02 CuOH -7.95
cu* CuCL 0.60 Cu(Ox), 8.70 |Cu(Ma), 8.81 Cu(OH) -16.2
Cu(OH) —26.6
F&* B B FeH,PO, 22.24 FeSQ 2.39 FeOx 2.30 FeMa 2.24 FeSu 1.42 FeOH -9.63
FeHPQ 15.94 Fe(Ox) 1.88 Fe(Su) 2.92
FeCl 0.67 FeNG; —-0.22 FeHPO, 21.48 FeSQ 4.27 FeOx 7.53 FeMa 7.52 FeSu 7.89 FeOH -2.87
FeC}b 1.37 FeH,PO, 23.54 Fe(SQ), 6.11 |Fe(Ox} 13.64 |Fe(Ma) 13.29 |Fe(Su) 13.34 Fe(OH) -6.16
FeHPQ 22.34 Fe(Ox} 18.49 | Fe(Ma) 16.93 Fe(OH} -12.16
FS FeH(POy), 45.98 Fe(OH), -22.16
FeHy(POy), 46.51
FeH(POy), 43.72
FeH,(POy); 69.12
FeH(POy); 68.44
Mg MgCl 0.49 MgNQ 0.06 MgHPQ 15.04 MgSQ@2.38 | MgOx 2.18 MgMa 2.86 MgSu 1.47 -
2+ MnClI 0.85 MnNQ -0.15 MnHPQ 14.79 MnSQ@2.26 | MnOx 3.15 |MnMa 3.11 MnSu 2.26 MnOH -10.5
Mn
Mn(Ox), 4.41
NiZ* NiCl —0.83 NINQ -0.22 NiIHPQ 14.54 NiSQ 2.45 NiOx 3.46 NiMa 3.92 NiSu 3.12 NiOH —-8.10
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441

NiCl,—1.2 | Ni(NQ),-1.0 Ni(Ox), 6.42 | Ni(Ma) 6.84 Ni(OH) —16.87
PbCI1.50 |PbNQ,1.15 PbHPQ15.64 PbS®2.77 | PbOx3.60 |PbMa 3.10 PbSu 2.40 PbOH —7.2
P PbCh 2.10 Pb(Ox} 6.10 Pb(OH) -16.1
PbC} 2.00 Pb(OH), —26.5
sPt SrCl-0.24 | SIN@O0.7 SrHPQ13.72 SrSQ1.44 SrOx 1.25 |[SrMa 1.30 SrSu 0.9 -
Sr(Ox) 1.90
VO,CI -0.38 | VQNO; -0.07 | VQH,PO, 20.91 [VO,S0,0.95 | VGQOx 6.49 VO,(OH); —7.1
V02+ VOzH PO4 17.54 V020X2 9.99 - -
VO,(HPQ,), 32.88
712" ZnCl 0.46 ZnNQ-0.68 | ZnHPQ14.86 ZnSQ2.03 | ZnOx3.42 [ZnMa 2.85 ZnSu 2.47 ZnOH —7.89
Zn(Ox), 6.16 Zn(OH), —14.92
HPQ, 12.338 HOx 4.266 |HMa 5.70 HSu 5.636 H,O 14
H - - H,PO, 19.54 - H,Ox 5.54 H,Ma 8.53 H,Su 9.84

HsPO, 21.681
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Table 5. Percentages of the various metal ions speg calculated on the basis of the thermodynamic rdel of
Table 4, under the hypothesis that Fe was presentsaFe(lll), for the PM sampled on 18" January 2014
(concentrations in the extraction solution at pH 4%, simulating rain droplet compaosition). Only speas having
percentages above 1% are reported. Free metal iorepcentages (given as sum of percentages of Mand of its
hydroxo derivatives) are reported also if below 1%.

metal ion major species other important species minor species
(> 5%) (< 5%)
Al Al(Ox), 54% Al(Ox); 37% AlMa 1%
AlOx 8% free Al < 1%
ca’ free Ca 91% CaS(3% CaNQ 1%
Ccd? free Cd 86% CdSQ12% CdCl 1%
CdNO; 1%
Co™ free Co 83% CoSQ16% CoOx 1%
crt CrSu 25% CrMa 13% CrSu 1%
free Cr 25% CrOx 13% CrMa;, 1%
CrOx 12%
CrOx; 9%
cu free Cu 68% CuOx 21% CuOx 2%
CuSQ 8% CuMa 1%
Fet FeOx 46% FeOx 25% FeSu 2%
free Fe 20% FeSuy 1%
FeOx 5% FeHPQ 1%
Mg** free Mg 87% MgSQ13%
Mn®* free Mn 89% MnS®10% MnOx 1%
Ni** free Ni 84% NiSQ 14% NiOx 2%
P free Pb 70% PbSC5% PbNQ 3%
PbOx 2%
Sr* free Sr 97% SrsS2%
SING; 1%
VO," free V 100%
n** free Zn 92% ZnSO6%
ZnOx 2%

Table 5 shows two well-defined groups of metakiofhe first group included those elements
for which the main (if not only) species in solutiovas the free metal ion. These elements were the
+2 metal cations, i.e. €5 Cd*, Cd*, CU/*, Mg**, Mn?*, Ni**, PF*, SF*, and Zi3", as well as the
monocharged V@. An example of speciation for this kind of metésreported in Figure 3a
(Zn?). The only other significant species was the selfmmplex, which represented around 10%
of the total metal ion in solution. For Ptand in part also for G6 and Nf* the sulfate complex
was more important, as it represented 25%, 16%14#6l respectively, of the total metal ion. For
CU?* the oxalate complex concentration was larger thahof the sulfate complex, and the former
represented 21% of total copper in solution. Cogpexciation is shown in Figure 3b. These results
indicated that the solubility of the first group mietal ions is scarcely affected by the presence of
ligands from the aerosol. Although, the solubilityntribution due to S§ contained in PM was
generally significant, especially for the toxic?Plon.

The second group of elements included the +3 nuetidns, i.e. A", CP*, and F&, for
which the free metal fraction in solution was lofvnbt negligible. The speciation for Eeis
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reported in Figure 3c. The main binder for thes¢aiiens was oxalate, in particular for Al and Fe:
Al-oxalate complexes represented 99% of total Adatution, and Fe-oxalate complexes accounted
for 76% of total Fe. Only a small fraction of Felfs) was bound to phosphate. Cr displayed a
more complicated speciation, as oxalate was afgignt but not exclusive binder. 34% of total Cr
was complexed by oxalate, but also Cr-succinat&sj2énd Cr-malonate complexes (14%) were
computed to have significant concentrations intsmhs. These results indicated that Al, Cr and Fe
solubility from aerosol was mainly, if not exclusly, determined by the ligands contained in the
PM among which oxalate was by far the most impdrtAhand Fe complexes were around 100
times more concentrated than the free metal iohseréfore, Al and Fe would have dissolved less
(~2 orders of magnitude less) in the absence afrocgaerosol components. Cr complexes were ca.
four times more concentrated than free Cr, so tlgaroc aerosol components increased the
solubility of Cr by four times.

Figure 3 shows also that at higher pH, close tdragty, condition that may be encountered in fog
droplets (Giulianelli et al., 2014) and biologidalids (Jayaraman et al., 2001), the speciation
picture changes significantly. Concerning Cu (Feg8b), at pH close to neutrality complexation
becomes increasingly important, with formation @idX, and CuMa complexes. Conversely for Fe
(Figure 3c), complexation becomes less importadtthe equilibrium shifts towards formation of
non-soluble iron hydroxides.

The results obtained in this study concerning cexation of F&" and Cd* by oxalate in simulated
rain droplets are consistent with those reportedSblgeinhardt et al. (2013) for aerosol samples
from nine sites in Germany. Conversely, while Schardt et al. (2013) found that nitrate was an
important ligand for Mf', in our study only a limited complexation of?land Sf* by nitrate was
found. This difference may be attributed to thdedént conditions considered in the two studies,
i.e. deliquescent particles in Scheinhardt et 2018) vs. simulated rain droplets in the present
study. Our results show that ~24% of Cu is compddxg organics, in line with the results obtained
by Nimmo and Fones (1997) in rainwaters from twessin northwest England. Conversely, we
found that only ~2% of Pb and Ni were associateith wrganics compared with 27-28% found by
Nimmo and Fones (1997) from adsorptive cathodiipitng voltammetry measurements. These
contrasting results may be explained by a scaredadility of ligands, already associated with
other metals, in our samples.

Availability of ligands may play a role in iron sdiilisation, which was only around 6-11% on
average in our samples (Table 2), lower than tRé #icoal fly ash in the presence of an excess of
oxalic acid (Chen and Grassian, 2013) however higtan the 0.26% found in the more refractory

Sahelian soil (Paris and Desboeufs, 2013).
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Figure 3. Speciation diagrams obtained with referece to Zrf* (a), Cu** (b), and F€* (c), under the experimental
conditions of this work. Speciation at pH = 4.5 aréndicated as a vertical dotted line for which vales are shown
in Table 5.

Literature data (Majestic et al., 2006) suggeshed F&* may represent the most abundant fraction
of soluble Fe. It may be argued that dissolved Rl eventually be transformed to Eeunder the
typical oxidising conditions of environmental aqueosolutions, thus producing the speciation
reported in Table 5 and depicted in Figure 3. Bpisciation, however, represents conditions at the
equilibrium, when time approaches infinity, whileet oxidation of F& to Fé" by oxygen is
relatively slow (Cotton and Wilkinson, 1988). If #eis a major component of atmospheric
particles, and dissolves in aqueous solution uthisroxidation state, then the solution obtained
will be expected to have a different speciatiomtti@at at equilibrium. The speciation calculations
were thus repeated in a scenario that considerpribmence of Fé instead of F&, to better
resemble conditions at short times after particesie into contact with water. The equilibrium
constants pertaining Feare reported in Table 4; the results of the spieciacalculation are
reported in Table 6.

Fe* forms strong complexes with hard ligands such xedate, whereas Eeforms only weak
complexes with these organic compounds. This explthe big speciation changes which can be
observed in Fe speciation at infinite and at stioreés (Table 5s. Table 6): Fe is mostly bound to
oxalic acid if it is in the 3+ form, whereas it rams almost entirely as free ion if it is in the 2+
form. When (as in the considered aerosol sampke)dtal concentration of Fe is relatively large
and the oxidation state is 2+, a large amount @llaig remains available to complex other metal
ions thus changing their speciation too. In pakticithe fraction of oxalate complexes of AICF*,

and Cd" is much larger at short times. In addition, mishanges can be observed also for some
other ions, and, conversely, the fractions of frestal ions, and/or of other complexes, are generall
reduced. If Fe is contained as’F the PM, therefore, the solubility of all othesetal ions from
the PM to the aqueous solution can be further aszd.
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Table 6. Percentages of the various metal ions speg calculated on the basis of the thermodynamic rdel of
Table 4, under the hypothesis that all Fe was Fe(llrather than Fe(lll), for the PM sampled on 10" January
2014 (concentrations in the extraction solution apH 4.5, simulating rain droplet composition). Only species
having percentages above 1% are reported. Free mét@n percentages (given as sum of percentages of Mand
of its hydroxo derivatives) are reported also if blow 1%. Values in blue, black and red indicate thapercentages
decreased, did not change, or increased, respectiyewith respect to corresponding values of Table.5values in
bold indicate that the increase/decrease was veryarked.

metal ion major species other important minor species
species (> 5%) (< 5%)
Al®* Al(Ox), 63% Al(Ox); 35% AlOX 2%
AlMa < 1%
free Al < 1%
ca’ free Ca 91% CaSQ 8% CaNGQ; 1%
Cd* free Cd 86% CdSQ 12% CdCl 1%
CdNG; 1%
co™ free Co 81% CoSQ 16% CoOx 3%
crt CrOx; 47% Crox, 27% CrMa 4%
CrOx 9% CrSu < 1%
CrSu 6% CrMa, < 1%
free Cr 6%
cu* free Cu 47% CuOx 37% CuMa 1%
CuOx, 10%
CuSQ 5%
Fet free Fe 87% FeSQ, 13% FeOx complexes < 1%
Mg™* free Mg 87% MgSQ, 13%
Mn®* free Mn 88% MnSO, 9% MnOx 3%
Ni** free Ni 81% NiSO, 14%
NiOx 5%
Pk free Pb 68% PbSQ 24% PbNG; 3%
PbOx 5%
st free Sr 97% SrsSQ 2%
SING; 1%
VO," free V 100%
zn* free Zn 89% ZnSQ, 6%
ZnOx 5%

3.4 Detection of metal-ligand complexes in urban PMg

Considering the concentrations and soluble frastioh the elements (Table 2) and the
complexes that are most likely to form in soluti@able 5), the metal-ligand complexes that are
expected to be present at the highest concentsatioour samples are those involving the metals
Fe, Cu, Mn and Pb with the ligands oxalate, ma®aat succinate.

In order to look for signals in the mass spected thay be attributable to these complexes, a
database was built for each possible metal-ligammibination. We considered the most stable
oxidation states in aqueous solution for each eferie(11), Fe(lll), Cu(l), Cu(ll), Mn(ll), Mn(ll1),
Pb(Il) and Pb(lV). Concerning the ligands, we cdaesed both the deprotonated form and the
monoprotonated form for each ligand. For the migalhd complex formation we considered a
coordination of up to 6 with the possibility to edmate water molecules at the sites not occupied

by an organic ligand. No mixed complexes (one metak two ligands, or one ligand + two metal
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ions) were included in the database. For each raata#t3 complexes were obtained and associated
with their corresponding exact mass.

All possible complexes were searched for in theo&&81-HRMS spectra as detailed in section
2.4.3; results are reported in Table 7. Of all gwescombination considered, five were found in the
mass spectra of the samples. Among these, only amepxalate of iron (lll) with formula
C,HsFeQs, was confirmed by analysis of standard soluti@tandard solutions of iron(lll) oxalates
([Fe*] = 2.32-10 M; [Ox?] = 2.20-10" M) in water/methanol (50:50) at pH 2.6, 3.2 ar@dnd in
methanol at autogenic pH presented peaks in the spestra of the oxalate anion, and the oxalate
of iron(lll) with stoichiometry 2:1 (with neutrabfmula GHFeQ). In the solution at pH 4, more
similar to sample conditions, the oxalate of irdp(With stoichiometry 1:1 (with neutral formula
C,HsFeQ)) was also detected, thus confirming the signal thas assigned in the real samples
(species in bold in Table 7). However, the ratiobdeen GHFeQ; and GHzFeQ; is about 10:1 in
the standard solution while ;83FeQs; is the only detected species in the real sampless
discrepancy between real samples and standardics®utnay be due to different oxalate
concentrations in the real samples and/or matfectf that might have influenced fragmentation in
the ESI source. Further work is needed to confinm presence of metal-ligand complexes in
atmospheric aerosol, including measurements witlpoigr extraction in an aqueous or organic

solvent that may introduce artefacts.

Table 7. Detected metal-ligand (ML) complexes in moESI-HRMS spectra (in negative ionisation mode) of
PM, s samples collected from the's December 2013 to the L April 2014. The species in bold was confirmed by
analysis of standard solutions.

Formula Metal Ligands Coordinating Adducts Detected ion Samples in which ML were
ion water molecules detected

CgH1eFeQyy Fe* 2x (S +H) 3x(HO) CI, For [ML+Cl+For]*  QF11-W

C,HJFeOq Fe** Ox* H,0 + OH cr [ML+CI] - QF8-W, QF9-W

Ci6H23MNO;; Mn®*  4x(SH +H) H,0 For, Ac  [ML+For+Ac]* QF6-W, QF16-W

CsH,CuQNa C#"  2xM& H,O Na [ML+Na]’ QF1-W, QF9-W, QF10-W

CigH,,CUON  CU¥ 4x(SHF+H) H,0 NH,", Fof [ML+NH4+For] QF15-W, QF17-W, QF18-W

The samples in which the iron oxalate complex weteated were collected on thé 3anuary
2014 and on the"™January 2014. These two days were characterisedrbiatively high aerosol
concentration (PMs 74 pg nt on the 8 January) and ambient temperature was close to the
dewpoint temperature (Lawrence, 2005) thereforecaiohg a high probability of fog formation
favouring aqueous phase chemistry. These werertlyetwo days in which both conditions (high

aerosol loading and high probability of fog fornaaj occurred simultaneously.
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4. Conclusions

We investigated the formation of metal-ligand coaxels, and how this process may affect
the solubility of metals, in urban atmospheric aetesamples collected in the city centre of Padua
(Italy) from the %' December 2013 to the™1April 2014. Short-chain dicarboxylic acids, i.e.
oxalate, succinate, and malonate, were abundaos@eromponents in the collected samples that
possess ligand properties. We found that orgaganti concentrations are significantly correlated
with the soluble fraction of non-readily solubletads, such as Fe.

PCA applied to the soluble fractions of all metaitgl the concentration of both organic and
inorganic anions showed that very soluble metalshsas Zn, K, Rb, and Mg, are not associated
with the presence of the organic ligands. Fe anddpbthe contrary, are the elements whose
solubility is strongly associated with the present¢he organic ligands. A speciation analysis in
solution at pH 4.5, simulating fog/rainwater, pemtout that many metals are either partly
complexed with oxalate, malonate and succinate @u, Zn, Mn, Pb, and Ni, or completely
complexed with the same diacids, like Al, Cr and Hee solubility increments of Al and Fe due to
aerosol components can be estimated to be aroundtders of magnitudes, while for Cr the
solubility is increased by four times due to thegance of diacids. According to our results, the
oxidation state of Fe can have a significant eftactthe speciation of this and of other metal ions
dissolving in aqueous solution. Further studieseapmecessary to obtain information on the
oxidation state of Fe, both when contained in Pl @mce released in an aqueous solution, to allow
an accurate prediction of the speciation picturBMfcomponents.

Direct analysis of aerosol extracts in methanohwianoESI-HRMS showed the presence of a
signal of a 1:1 complex between Fe(lll) and oxalatevo samples collected on days characterised
by high aerosol loading and high probability of flegmation, indicating that these complexes can
be identified directly.

The study here reported considers metal speciatiaquilibrium and confirms, using both
guantitative data and a thermodynamic model, tmgiortant environmental and health properties
of the aerosol may be influenced by metal-ligartéractions in the specific media. The solubility
changes of metal ions potentially induced by comggien with organics affects the bioaccessibility
(Wiseman, 2015) of the metals themselves. Formatibrcomplexes can also impact redox
chemistry, therefore the ability of metals to déplantioxidants in the lungs once particles are
inhaled and come into contact with lung fluids. thar work is needed to investigate the kinetic of

solubilisation of the metals and how it is affecbgdother aerosol components.
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Highlights
*  Solubility and speciation of metal ions released by PM in aqueous solutions simulating fog
and rainwater was investigated
e Solubility of Al, Cr, and Fe was strongly correlated to the concentrations of oxalate
*  Succinate and malonate moderately affected the solubility of Cr
e Cu, Zn, Mn, Pb, and Ni were partly complexed by organic acids in solution

»  Direct detection of an iron-oxalate complex was also performed in aerosol sample extracts
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