33 research outputs found

    Identification of Recessively Inherited Genetic Variants Potentially Linked to Pancreatic Cancer Risk

    Get PDF
    Although 21 pancreatic cancer susceptibility loci have been identified in individuals of European ancestry through genome-wide association studies (GWASs), much of the heritability of pancreatic cancer risk remains unidentified. A recessive genetic model could be a powerful tool for identifying additional risk variants. To discover recessively inherited pancreatic cancer risk loci, we performed a re-analysis of the largest pancreatic cancer GWAS, the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), including 8,769 cases and 7,055 controls of European ancestry. Six single nucleotide polymorphisms (SNPs) showed associations with pancreatic cancer risk according to a recessive model of inheritance. We replicated these variants in 3,212 cases and 3,470 controls collected from the PANcreatic Disease ReseArch (PANDoRA) consortium. The results of the meta-analyses confirmed that rs4626538 (7q32.2), rs7008921 (8p23.2) and rs147904962 (17q21.31) showed specific recessive effects (p10-3), although none of the six SNPs reached the conventional threshold for genome-wide significance (p < 5×10-8). Additional bioinformatic analysis explored the functional annotations of the SNPs and indicated a possible relationship between rs36018702 and expression of the BCL2L11 and BUB1 genes, which are known to be involved in pancreatic biology. Our findings, while not conclusive, indicate the importance of considering non-additive genetic models when performing GWAS analysis. The SNPs associated with pancreatic cancer in this study could be used for further meta-analysis for recessive association of SNPs and pancreatic cancer risk and might be a useful addiction to improve the performance of polygenic risk scores

    SLC22A3 polymorphisms do not modify pancreatic cancer risk, but may influence overall patient survival

    Get PDF
    Expression of the solute carrier (SLC) transporter SLC22A3 gene is associated with overall survival of pancreatic cancer patients. This study tested whether genetic variability in SLC22A3 associates with pancreatic cancer risk and prognosis. Twenty four single nucleotide polymorphisms (SNPs) tagging the SLC22A3 gene sequence and regulatory elements were selected for analysis. Of these, 22 were successfully evaluated in the discovery phase while six significant or suggestive variants entered the validation phase, comprising a total study number of 1,518 cases and 3,908 controls. In the discovery phase, rs2504938, rs9364554, and rs2457571 SNPs were significantly associated with pancreatic cancer risk. Moreover, rs7758229 associated with the presence of distant metastases, while rs512077 and rs2504956 correlated with overall survival of patients. Although replicated, the association for rs9364554 did not pass multiple testing corrections in the validation phase. Contrary to the discovery stage, rs2504938 associated with survival in the validation cohort, which was more pronounced in stage IV patients. In conclusion, common variation in the SLC22A3 gene is unlikely to significantly contribute to pancreatic cancer risk. The rs2504938 SNP in SLC22A3 significantly associates with an unfavorable prognosis of pancreatic cancer patients. Further investigation of this SNP effect on the molecular and clinical phenotype is warranted

    Healthy and pro-inflammatory gut ecology plays a crucial role in the digestion and tolerance of a novel Gluten Friendly™ bread in celiac subjects : Randomized, double blind, placebo control in vivo study

    Get PDF
    Gluten Friendly™ (GF) is a new gluten achieved through a physicochemical process applied to wheat kernels. The goal of this research was to assess the in vivo effects of Gluten Friendly™ bread on celiac gut mucosa and microbiota. In a double-blind placebo-controlled intervention study, 48 celiac disease (CD) patients were randomized into 3 groups to eat 100 g of bread daily, containing different doses (0; 3 g; 6 g) of GF for 12 weeks. The small-bowel morphology (VH/CrD), intraepithelial densities of CD3+, celiac serology, MUC2, CB1, gut permeability, proinflammatory cytokines, gluten in stools, symptoms, and gut microbial composition were assessed. All 48 CD subjects experienced no symptoms. K-means analysis evidenced celiac subjects clustering around unknown parameters independent of GF dosage: K1 35%; K2 30%; K3 35%. VH/CrD significantly decreased in K1 and K2. VH/CrD did not correlate with IEL increase in K2. 33-mer was not detected in 47% and 73% of patients in both K1 and K2, respectively. VH/CrD and IEL did not change significantly and strongly correlated with the absence of 33-mer in K3. Inflammation and VH/CrD decrease are strongly related with the presence of proinflammatory species at the baseline. A boost in probiotic, butyrate-producing genera, is strongly related with GF tolerance at the end of the trial. Our research suggests that a healthy and proinflammatory ecology could play a crucial role in the digestion and tolerance of the new gluten molecule in celiac subjects. However, GF can be completely digested by gut microbiota of CD subjects and shapes it toward gut homeostasis by boosting healthy butyrate-producing populations. The clinical trial registry number is NCT03137862 (https://clinicaltrials.gov).publishedVersionPeer reviewe

    Persistent Megalocystic Ovary Following in Vitro Fertilization in a Postpartum Patient with Polycystic Ovarian Syndrome

    Get PDF
    SummaryObjectiveOvarian hyperstimulation syndrome (OHSS) is more severe when pregnancy occurs, as the developing pregnancy produces human chorionic gonadotropin, which stimulates the ovary's persistent growth. If no pregnancy occurs, the syndrome will typically resolve within 1 week. In a maintained pregnancy, slow resolution of symptoms usually occurs over 1-2 months.Case ReportA 31-year-old woman, gravida 2, para 1, aborta 1, with polycystic ovary syndrome underwent in vitro fertilization (IVF) with clomiphene citrate and follicle-stimulating hormone/gonadotropin releasing hormone-antagonist stimulation. During transvaginal oocyte retrieval, enlarged bilateral ovaries were noted. She had an episode of OHSS after IVF/embryo transfer, for which paracentesis was performed three times. Pregnancy was achieved. Throughout antenatal examinations, bilateral ovaries were enlarged. She delivered a healthy baby by cesarean section at term. However, 1 month after delivery, the bilateral ovary had not shrunk, and levels of tumor markers CA125 and CA199 were 50.84 and 41.34 U/mL, respectively. At laparotomy for suspected malignancy, both adnexae formed “kissing ovaries”, which were multinodulated with yellow serous fluid. Specimens from wedge resection submitted for frozen section showed a benign ovarian cyst. The final pathology report showed bilateral follicle cysts.ConclusionWith the increasing use of gonadotropins in the management of infertility, ovarian enlargement secondary to hyperstimulation is common. Generally, symptoms appear between the 6th and 13th weeks of pregnancy and disappear thereafter. The hyperstimulated ovary often subsides after the first trimester. This case is unusual as the megalocystic ovary persisted after delivery. To the best of our knowledge, we report the first case of enlarged bilateral ovaries persisting 2 months after delivery

    Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study

    Get PDF
    Telomere deregulation is a hallmark of cancer. Telomere length measured in lymphocytes (LTL) has been shown to be a risk marker for several cancers. For pancreatic ductal adenocarcinoma (PDAC) consensus is lacking whether risk is associated with long or short telomeres. Mendelian randomization approaches have shown that a score built from SNPs associated with LTL could be used as a robust risk marker. We explored this approach in a large scale study within the PANcreatic Disease ReseArch (PANDoRA) consortium. We analyzed 10 SNPs (ZNF676-rs409627, TERT-rs2736100, CTC1-rs3027234, DHX35-rs6028466, PXK-rs6772228, NAF1-rs7675998, ZNF208-rs8105767, OBFC1-rs9420907, ACYP2-rs11125529 and TERC-rs10936599) alone and combined in a LTL genetic score (“teloscore”, which explains 2.2% of the telomere variability) in relation to PDAC risk in 2,374 cases and 4,326 controls. We identified several associations with PDAC risk, among which the strongest were with the TERT-rs2736100 SNP (OR = 1.54; 95%CI 1.35–1.76; p = 1.54 × 10−10) and a novel one with the NAF1-rs7675998 SNP (OR = 0.80; 95%CI 0.73–0.88; p = 1.87 × 10−6, ptrend = 3.27 × 10−7). The association of short LTL, measured by the teloscore, with PDAC risk reached genome-wide significance (p = 2.98 × 10−9 for highest vs. lowest quintile; p = 1.82 × 10−10 as a continuous variable). In conclusion, we present a novel genome-wide candidate SNP for PDAC risk (TERT-rs2736100), a completely new signal (NAF1-rs7675998) approaching genome-wide significance and we report a strong association between the teloscore and risk of pancreatic cancer, suggesting that telomeres are a potential risk factor for pancreatic cancer

    Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction

    Get PDF
    Most cases of pancreatic ductal adenocarcinoma (PDAC) are asymptomatic in early stages, and the disease is typically diagnosed in advanced phases, resulting in very high mortality. Tools to identify individuals at high risk of developing PDAC would be useful to improve chances of early detection

    Development of a metabolites risk score for one-year mortality risk prediction in pancreatic adenocarcinoma patients

    Get PDF
    PURPOSE: Survival among patients with adenocarcinoma pancreatic cancer (PDCA) is highly variable, which ranges from 0% to 20% at 5 years. Such a wide range is due to tumor size and stage, as well other patients' characteristics. We analyzed alterations in the metabolomic profile, of PDCA patients, which are potentially predictive of patient's one-year mortality. EXPERIMENTAL DESIGN: A targeted metabolomic assay was conducted on serum samples of patients diagnosed with pancreatic cancer. Statistical analyses were performed only for those 27 patients with information on vital status at follow-up and baseline clinical features. Random Forest analysis was performed to identify all metabolites and clinical variables with the best capability to predict patient's mortality risk at one year. Regression coefficients were estimated from multivariable Weibull survival model, which included the most associated metabolites. Such coefficients were used as weights to build a metabolite risk score (MRS) which ranged from 0 (lowest mortality risk) to 1 (highest mortality risk). The stability of these weights were evaluated performing 10,000 bootstrap resamplings. RESULTS: MRS was built as a weighted linear combination of the following five metabolites: Valine (HR = 0.62, 95%CI: 0.11–1.71 for each standard deviation (SD) of 98.57), Sphingomyeline C24:1 (HR = 2.66, 95%CI: 1.30–21.09, for each SD of 20.67), Lysine (HR = 0.36, 95%CI: 0.03–0.77, for each SD of 51.73), Tripentadecanoate TG15 (HR = 0.25, 95%CI: 0.01–0.82, for each SD of 2.88) and Symmetric dimethylarginine (HR = 2.24, 95%CI: 1.28–103.08, for each SD of 0.62), achieving a very high discrimination ability (survival c-statistic of 0.855, 95%CI: 0.816–0.894). Such association was still present even after adjusting for the most associated clinical variables (confounders). CONCLUSIONS: The mass spectrometry-based metabolomic profiling of serum represents a valid tool for discovering novel candidate biomarkers with prognostic ability to predict one-year mortality risk in patients with pancreatic adenocarcinoma

    Evaluation of inherited germline mutations in cancer susceptibility genes among pancreatic cancer patients: a single-center study

    No full text
    Abstract Background Germline mutations in cancer susceptibility genes were identified in pancreatic cancer (PanC) patients with a sporadic disease and in those unselected for family cancer history. Methods With the aim to determine the prevalence of germline predisposition genes mutations in PanC, and to evaluate whether they were associated with the presence of PanC, we profiled a custom AmpliSeq panel of 27 cancer susceptibility genes in 47 PanC patients and 51 control subjects by using the Ion Torrent PGM system. Results Multigene panel testing identified a total of 31 variants in 27 PanC (57.4%), including variants with pathogenic/likely pathogenic effect, those of uncertain significance, and variants whose clinical significance remains currently undefined. Five patients carried more than one variant in the same gene or in different genes. Eight patients (17.0%) had at least one pathogenic/likely pathogenic variant in four main genes: CFTR (10.6%), BRCA2 (8.5%), ATM and CHEK2 (2.1%). Pathogenic/likely pathogenic mutation were identified in patients with positive PanC family history (20%) or in patients without first-degree relatives affected by PanC (13.6%). All the BRCA2 mutation carriers were unselected PanC patients. The presence of mutations in BRCA2 was significantly associated with an increased occurrence of PanC and with positive family history for endometrial cancer (p = 0.018). Conclusions This study confirmed the potential remarkable contribution of BRCA2 in assessing the presence of PanC. Overall our findings supported the recommendation of offering the germline testing to all the PanC patients with the intent to reduce the number of underdiagnosed carriers of mutations in predisposition genes, and not to preclude their relatives from the opportunity to benefit from surveillance programs

    Downexpression of miR-200c-3p Contributes to Achalasia Disease by Targeting the <i>PRKG1</i> Gene

    No full text
    Achalasia is an esophageal smooth muscle motility disorder with unknown pathogenesis. Taking into account our previous results on the downexpression of miR-200c-3p in tissues of patients with achalasia correlated with an increased expression of PRKG1, SULF1, and SYDE1 genes, our aim was to explore the unknown biological interaction between these genes and human miR-200c-3p and if this relation could unravel their functional role in the etiology of achalasia. To search for putative miR-200c-3p binding sites in the 3′-UTR of PRKG1, SULF1 and SYDE1, a bioinformatics tool was used. To test whether PRKG1, SULF1, and SYDE1 are targeted by miR-200c-3p, a dual-luciferase reporter assay and quantitative PCR on HEK293 and fibroblast cell lines were performed. To explore the biological correlation between PRKG1 and miR-200c-3p, an immunoblot analysis was carried out. The overexpression of miR-200c-3p reduced the luciferase activity in cells transfected with a luciferase reporter containing a fragment of the 3′-UTR regions of PRKG1, SULF1, and SYDE1 which included the miR-200c-3p seed sequence. The deletion of the miR-200c-3p seed sequence from the 3′-UTR fragments abrogated this reduction. A negative correlation between miR-200c-3p and PRKG1, SULF1, and SYDE1 expression levels was observed. Finally, a reduction of the endogenous level of PRKG1 in cells overexpressing miR-200c-3p was detected. Our study provides, for the first time, functional evidence about the PRKG1 gene as a direct target and SULF1 and SYDE1 as potential indirect substrates of miR-200c-3p and suggests the involvement of NO/cGMP/PKG signaling in the pathogenesis of achalasia
    corecore