28 research outputs found

    A multiscale model of the effect of Ir thickness on the static and dynamic properties of Fe/Ir/Fe films

    Get PDF
    The complex magnetic properties of Fe/Ir/Fe sandwiches are studied using a hierarchical multi-scale model. The approach uses first principles calculations and thermodynamic models to reveal the equilibrium spinwave, magnetization and dynamic demagnetisation properties. Finite temperature calculations show a complex spinwave dispersion and an initially counter-intuitive, increasing exchange stiffness with temperature (a key quantity for device applications) due to the effects of frustration at the interface, which then decreases due to magnon softening. Finally, the demagnetisation process in these structures is shown to be much slower at the interface as compared with the bulk, a key insight to interpret ultrafast laser-induced demagnetization processes in layered or interface materials

    Modeling the thickness dependence of the magnetic phase transition temperature in thin FeRh films

    Get PDF
    FeRh and its first-order phase transition can open new routes for magnetic hybrid materials and devices under the assumption that it can be exploited in ultra-thin-film structures. Motivated by experimental measurements showing an unexpected increase in the phase transition temperature with decreasing thickness of FeRh on top of MgO, we develop a computational model to investigate strain effects of FeRh in such magnetic structures. Our theoretical results show that the presence of the MgO interface results in a strain that changes the magnetic configuration which drives the anomalous behavior

    Spin-polarized transport in ferromagnetic multilayers: an unconditionally convergent FEM integrator

    Get PDF
    23 pages, 1 figureWe propose and analyze a decoupled time-marching scheme for the coupling of the Landau-Lifshitz-Gilbert equation with a quasilinear diffusion equation for the spin accumulation. This model describes the interplay of magnetization and electron spin accumulation in magnetic and non-magnetic multilayer structures. Despite the strong nonlinearity of the overall PDE system, the proposed integrator requires only the solution of two linear systems per time-step. Unconditional convergence of the integrator towards weak solutions is proved

    A multiscale model of the effect of Ir thickness on the static and dynamic properties of Fe/Ir/Fe films

    Get PDF
    The complex magnetic properties of Fe/Ir/Fe sandwiches are studied using a hierarchical multi-scale model. The approach uses first principles calculations and thermodynamic models to reveal the equilibrium spinwave, magnetization and dynamic demagnetisation properties. Finite temperature calculations show a complex spinwave dispersion and an initially counter-intuitive, increasing exchange stiffness with temperature (a key quantity for device applications) due to the effects of frustration at the interface, which then decreases due to magnon softening. Finally, the demagnetisation process in these structures is shown to be much slower at the interface as compared with the bulk, a key insight to interpret ultrafast laser-induced demagnetization processes in layered or interface materials

    Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator

    Get PDF
    We propose and analyze a decoupled time-marching scheme for the coupling of the Landau-Lifshitz-Gilbert equation with a quasilinear diffusion equation for the spin accumulation. This model describes the interplay of magnetization and electron spin accumulation in magnetic and non-magnetic multilayer structures. Despite the strong nonlinearity of the overall PDE system, the proposed integrator requires only the solution of two linear systems per time-step. Unconditional convergence of the integrator towards weak solutions is proved.Comment: 23 pages, 1 figur

    A three-dimensional spin-diffusion model for micromagnetics

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tWe solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation.The financial support by the Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development as well as the Austrian Science Fund (FWF) under grant W1245 and F4102 SFB ViCoM, the innovative projects initiative of Vienna University of Technology, the Vienna Science and Technology Fund (WWTF) under grant MA14-044, and the Royal Society under UF080837 is gratefully acknowledged
    corecore