38 research outputs found
Key Variants via the Alzheimer\u27s Disease Sequencing Project Whole Genome Sequence Data
INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer\u27s disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci.
METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer\u27s Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants.
RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses.
DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS
Mutations in the Cholesterol Transporter Gene ABCA5 Are Associated with Excessive Hair Overgrowth
Inherited hypertrichoses are rare syndromes characterized by excessive hair growth that does not result from androgen stimulation, and are often associated with additional congenital abnormalities. In this study, we investigated the genetic defect in a case of autosomal recessive congenital generalized hypertrichosis terminalis (CGHT) (OMIM135400) using whole-exome sequencing. We identified a single base pair substitution in the 5âČ donor splice site of intron 32 in the ABC lipid transporter gene ABCA5 that leads to aberrant splicing of the transcript and a decrease in protein levels throughout patient hair follicles. The homozygous recessive disruption of ABCA5 leads to reduced lysosome function, which results in an accumulation of autophagosomes, autophagosomal cargos as well as increased endolysosomal cholesterol in CGHT keratinocytes. In an unrelated sporadic case of CGHT, we identified a 1.3 Mb cryptic deletion of chr17q24.2-q24.3 encompassing ABCA5 and found that ABCA5 levels are dramatically reduced throughout patient hair follicles. Collectively, our findings support ABCA5 as a gene underlying the CGHT phenotype and suggest a novel, previously unrecognized role for this gene in regulating hair growth
Genome-Wide Meta-Analysis in Alopecia Areata Resolves HLA Associations and Reveals Two New Susceptibility Loci
Alopecia areata (AA) is a prevalent autoimmune disease with ten known susceptibility loci. Here we perform the first meta-analysis in AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and 7,543 controls. The strongest region of association is the MHC, where we fine-map 4 independent effects, all implicating HLA-DR as a key etiologic driver. Outside the MHC, we identify two novel loci that exceed statistical significance, containing ACOXL/BCL2L11(BIM) (2q13); GARP (LRRC32) (11q13.5), as well as a third nominally significant region SH2B3(LNK)/ ATXN2 (12q24.12). Candidate susceptibility gene expression analysis in these regions demonstrates expression in relevant immune cells and the hair follicle. We integrate our results with data from seven other autoimmune diseases and provide insight into the alignment of AA within these disorders. Our findings uncover new molecular pathways disrupted in AA, including autophagy/apoptosis, TGFĂ/Tregs and JAK kinase signaling, and support the causal role of aberrant immune processes in AA
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
A novel Alzheimer disease locus located near the gene encoding tau protein
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE Δ4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE Δ4+ (10 352 cases and 9207 controls) and APOE Δ4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE Δ4 status. Suggestive associations (P<1 Ă 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE Δ4+: 1250 cases and 536 controls; APOE Δ4-: 718 cases and 1699 controls). Among APOE Δ4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 Ă 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE Δ4+ subjects (CR1 and CLU) or APOE Δ4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 Ă 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (Pâ€1.3 Ă 10-8), frontal cortex (Pâ€1.3 Ă 10-9) and temporal cortex (Pâ€1.2 Ă 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 Ă 10-6) and temporal cortex (P=2.6 Ă 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE Δ4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted
Recommended from our members
Genetically elevated high-density lipoprotein cholesterol through the cholesteryl ester transfer protein gene does not associate with risk of Alzheimer's disease.
IntroductionThere is conflicting evidence whether high-density lipoprotein cholesterol (HDL-C) is a risk factor for Alzheimer's disease (AD) and dementia. Genetic variation in the cholesteryl ester transfer protein (CETP) locus is associated with altered HDL-C. We aimed to assess AD risk by genetically predicted HDL-C.MethodsTen single nucleotide polymorphisms within the CETP locus predicting HDL-C were applied to the International Genomics of Alzheimer's Project (IGAP) exome chip stage 1 results in up 16,097 late onset AD cases and 18,077 cognitively normal elderly controls. We performed instrumental variables analysis using inverse variance weighting, weighted median, and MR-Egger.ResultsBased on 10 single nucleotide polymorphisms distinctly predicting HDL-C in the CETP locus, we found that HDL-C was not associated with risk of AD (P > .7).DiscussionOur study does not support the role of HDL-C on risk of AD through HDL-C altered by CETP. This study does not rule out other mechanisms by which HDL-C affects risk of AD
Network analysis of drug effect on triglyceride-associated DNA methylation
Abstract Background DNA methylation, an epigenetic modification, can be affected by environmental factors and thus regulate gene expression levels that can lead to alterations of certain phenotypes. Network analysis has been used successfully to discover gene sets that are expressed differently across multiple disease states and suggest possible pathways of disease progression. We applied this framework to compare DNA methylation levels before and after lipid-lowering medication and to identify modules that differ topologically between the two time points, revealing the association between lipid medication and these triglyceride-related methylation sites. Methods We performed quality control using beta-mixture quantile normalization on 463,995 cytosine-phosphate-guanine (CpG) sites and deleted problematic sites, resulting in 423,004 probes. We identified 14,850 probes that were nominally associated with triglycerides prior to treatment and performed weighted gene correlation network analysis (WGCNA) to construct pre- and posttreatment methylation networks of these probes. We then applied both WGCNA module preservation and generalized Hamming distance (GHD) to identify modules with topological differences between the pre- and posttreatment. For modules with structural changes between 2 time points, we performed pathway-enrichment analysis to gain further insight into the biological function of the genes from these modules. Results Six triglyceride-associated modules were identified using pretreatment methylation probes. The same 3 modules were not preserved in posttreatment data using both the module-preservation and the GHD methods. Top-enriched pathways for the 3 differentially methylated modules are sphingolipid signaling pathway, proteoglycans in cancer, and metabolic pathways (p values <â0.005). One module in particular included an enrichment of lipid-related pathways among the top results. Conclusions The same 3 modules, which were differentially methylated between pre- and posttreatment, were identified using both WGCNA module-preservation and GHD methods. Pathway analysis revealed that triglyceride-associated modules contain groups of genes that are involved in lipid signaling and metabolism. These 3 modules may provide insight into the effect of fenofibrate on changes in triglyceride levels and these methylation sites
Recommended from our members
Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin.
Animal development and homeostasis depend on precise temporal and spatial intercellular signaling. Components shared between signaling pathways, generally thought to decrease specificity, paradoxically can also provide a solution to pathway coordination. Here we show that the Bone Morphogenetic Protein (BMP) and Wnt signaling pathways share Apcdd1 as a common inhibitor and that Apcdd1 is a taxon-restricted gene with novel domains and signaling functions. Previously, we showed that Apcdd1 inhibits Wnt signaling (Shimomura et al., 2010), here we find that Apcdd1 potently inhibits BMP signaling in body axis formation and neural differentiation in chicken, frog, zebrafish. Furthermore, we find that Apcdd1 has an evolutionarily novel protein domain. Our results from experiments and modeling suggest that Apcdd1 may coordinate the outputs of two signaling pathways that are central to animal development and human disease