5 research outputs found
Análisis de las variables de diseño de un edificio industrial de acuerdo a la normativa de limitación de consumo y demanda energética
[ES] El Código Técnico de la Edificación tiene como uno de sus objetivos conseguir un uso racional de la energía necesaria para la utilización de los edificios, reduciendo a límites sostenibles su consumo y conseguir asimismo que una parte de este consumo proceda de fuentes de energía renovables. Para ello exige normativamente una limitación de la demanda energética y una limitación del consumo energético del edificio en función de su uso y de su emplazamiento (zona climática).
En el diseño y construcción de plantas industriales cada vez es más habitual la ejecución de edificios exentos o adosadas a las naves industriales, donde se realiza las labores administrativas y comerciales asociadas a la actividad industrial. Este tipo de edificios deben cumplir las limitaciones de consumo y demanda energética que marca el CTE DB HE, por lo que cobra especial importancia su diseño y el estudio de las variables que influyen en el comportamiento energético del mismo: orientación, materiales de la envolvente, número y tipo de huecos, instalaciones térmicas, etc.
El objetivo de este Trabajo Final de Máster es, para un caso de estudio (edificio administrativo asociado a una actividad industrial), analizar el comportamiento energético del edificio y la variabilidad del mismo mediante el programa HULC en función de las variables: zona climática, orientación y algunos de los tipos de envolventes más habituales de esta tipología constructiva.[EN] The Technical Building Code has as one of its main objectives to achieve a rational use of the energy necessary in the use of buildings, thus reducing its consumption up to sustainable limits, ensuring too that a part of this consumption comes from renewable energy sources. For this purpose, a limitation of energy demand and consumption of the building is normatively required, depending on its use and localisation (climatic zone).
In the design and construction of industrial plants, it¿s each time is more common the execution of exempt or attached buildings to the industrial plant, where administrative and commercial tasks associated with the industrial activity are carried out. This type of buildings must fulfil the limitations of energy consumption and demand required by the CTE DB HE, giving special importance to the design and the study of the variables that influence its energy behaviour: orientation, envelope materials, number and type of void, thermal installations, etc.
The objective of this Master¿s Final Project is, for a case study (an administrative building associated with an industrial activity), to analyse the energy performance and its variability using the program HULC based in these variables: climatic zone, orientation and some of the most common type of envelopes of this constructive tipology.[CA] El Codi Tècnic de l'Edificació té com un dels seus principals objectius aconseguir un ús racional
de l'energia necessària per a la utilització dels edificis, reduint a límits sostenibles el seu consum
i aconseguir així mateix que una part d'aquest consum procedisca de fonts d'energia renovables.
Per a això exigeix normativament una limitació de la demanda energètica i una limitació del
consum energètic de l'edifici en funció del seu ús i del seu emplaçament (zona climàtica).
En el disseny i construcció de plantes industrials cada vegada és més habitual l'execució
d'edificis exempts o adossats a les naus industrials, on es realitza les labors administratives i
comercials associades a l'activitat industrial. Aquest tipus d'edificis han de complir les
limitacions de consum i demanda energètica que marca el CTE DB HE, per la qual cobra
especial importància el seu disseny i l'estudi de les variables que influeixen en el comportament
energètic d'aquest: orientació, materials de l'envolupant, número i tipus de buits, instal·lacions
tèrmiques, etc.
L'objectiu d'aquest Treball Final de Màster és, per a un cas d'estudi (edifici administratiu
associat a una activitat industrial), analitzar el comportament energètic de l'edifici i la
variabilitat del mateix mitjançant el programa HULC en funció de les variables: zona climàtica,
orientació i alguns dels tipus d'envolupants més habituals d'aquesta tipologia constructiva.Gimeno Guillem, MÁ. (2019). Análisis de las variables de diseño de un edificio industrial de acuerdo a la normativa de limitación de consumo y demanda energética. http://hdl.handle.net/10251/129116TFG
Estudio energético y propuesta de mejora de instalaciones para Pabellón Polideportivo en la localidad de Sagunto
[ES] El objetivo de este proyecto de fin de grado será el análisis energético de un Pabellón Polideportivo situado en Sagunto, para el cual se caracterizarán todos los parámetros para poder obtener con el programa CE3X el certificado energético del edificio tal y como está construido.
Una vez obtenido el certificado se propondrán una serie de mejoras que mejorarán la eficiencia energética hasta la calificación que se debe obtener.
Por último se estudiarán las diversas alternativas para ver qué conjunto de medidas serían las que resultarían más convenientes desde el punto de vista económico y energético.[EN] The main objective of this end-of-degree project will be the energetic analysis of a Sports Hall located in Sagunto, for which all the parameters will be characterized in order to obtain with the program CE3X the energy certificate of the building as it is now.
Once obtained the certificate a series of improvements will be proposed that will improve the energy efficiency until the obtainment of the desired qualification.
Finally, the various alternatives will be studied to see which set of measures would be the most convenient both economically and energetically.[CAT/VA] L'objectiu d'aquest projecte de fi de grau és l'anàlisi energètic d'un Pavelló Poliesportiu situat a
Sagunt, per al qual es caracteritzaran tots els paràmetres per a poder obtindre amb el programa
CE3X el certificat energètic de l'edifici tal com està construït.
Una vegada obtingut el certificat es proposaran una sèrie de millores que milloraran l'eficiència
energètica fins a la qualificació que s'ha d'obtindre.
Finalment s'estudiaran les diverses alternatives per a veure quin conjunt de mesures serien les
que resultarien més convenients des del punt de vista econòmic i energètic.Gimeno Guillem, MÁ. (2017). Estudio energético y propuesta de mejora de instalaciones para Pabellón Polideportivo en la localidad de Sagunto. http://hdl.handle.net/10251/85024.TFG
Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings
[EN] The design of near zero energy offices is a priority, which involves looking to achieve designs which minimise energy consumption and balance energy requirements with an increase in the installation and consumption of renewable energy. In light of this, some authors have used computer software to achieve simulations of the energy behaviour of buildings. Other studies based on regulatory systems which classify and label energy use also generally make their assessments through the use of software. In Spain, there is an authorised procedure for certifying the energy performance of buildings, and software (LIDER-CALENER unified tool) which is used to demonstrate compliance of the performance of buildings both from the point of view of energy demand and energy consumption. The aim of this study is to analyse the energy behaviour of an office building and the variability of the same using the software in terms of the following variables: climate zone, building orientation and certain surrounding wall types and encasements typical of this type of construction.Fuentes Bargues, JL.; Vivancos, J.; Ferrer-Gisbert, P.; Gimeno-Guillem, MÁ. (2020). Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings. Sustainability. 12(13):1-23. https://doi.org/10.3390/su12135347S1231213Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398. doi:10.1016/j.enbuild.2007.03.007https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiD95W5-qrqAhVP62EKHaYLCFAQFjADegQIARAB&url=https%3A%2F%2Fec.europa.eu%2Fenergy%2Fsites%2Fener%2Ffiles%2Fdocuments%2F2012_energy_roadmap_2050_en_0.pdf&usg=AOvVaw3tfjm-IvZt9fXrnZuvpohwEuropean Comission Climate Strategies & Targets https://ec.europa.eu/clima/policies/strategies/2030_enEuropean Comission Climate Negotations https://ec.europa.eu/clima/policies/international/negotiations/paris_en2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0844&from=ENKurnitski, J., Saari, A., Kalamees, T., Vuolle, M., Niemelä, J., & Tark, T. (2011). Cost optimal and nearly zero (nZEB) energy performance calculations for residential buildings with REHVA definition for nZEB national implementation. Energy and Buildings, 43(11), 3279-3288. doi:10.1016/j.enbuild.2011.08.033Aparicio Ruiz, P., Guadix Martín, J., Salmerón Lissén, J. M., & Sánchez de la Flor, F. J. (2014). An integrated optimisation method for residential building design: A case study in Spain. Energy and Buildings, 80, 158-168. doi:10.1016/j.enbuild.2014.05.020Tourism and Digital Agenda Plan Nacional de Acción de Eficiencia Energética 2017–2020 https://ec.europa.eu/energy/sites/ener/files/documents/es_neeap_2017_es.pdfGuía de Ahorro y Eficiencia Energética en Oficinas http://www.officinaseficientes.es/docs/guia_OFF.pdfCrawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43(4), 661-673. doi:10.1016/j.buildenv.2006.10.027Pérez-Andreu, V., Aparicio-Fernández, C., Martínez-Ibernón, A., & Vivancos, J.-L. (2018). Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy, 165, 63-74. doi:10.1016/j.energy.2018.09.015Herrando, M., Cambra, D., Navarro, M., de la Cruz, L., Millán, G., & Zabalza, I. (2016). Energy Performance Certification of Faculty Buildings in Spain: The gap between estimated and real energy consumption. Energy Conversion and Management, 125, 141-153. doi:10.1016/j.enconman.2016.04.037Sinacka, J., & Ratajczak, K. (2018). Analysis of selected input data impact on energy demand in office building - case study. MATEC Web of Conferences, 222, 01015. doi:10.1051/matecconf/201822201015Mikulik, J. (2018). Energy Demand Patterns in an Office Building: A Case Study in Kraków (Southern Poland). Sustainability, 10(8), 2901. doi:10.3390/su10082901Aparicio Ruiz, P., Sánchez de la Flor, F. J., Molina Felix, J. L., Salmerón Lissén, J., & Guadix Martín, J. (2016). Applying the HVAC systems in an integrated optimization method for residential building’s design. A case study in Spain. Energy and Buildings, 119, 74-84. doi:10.1016/j.enbuild.2016.03.023Royal Decree 235/2013, of 5th April, Agreeing to the Procedure Basic for the Certification of the Energy Efficiency of Buildings https://www.boe.es/buscar/pdf/2013/BOE-A-2013-3904-consolidado.pdfUnified Tool LIDER-CALENER (HULC-Tool) https://veredes.es/blog/en/herramienta-unificada-lider-calener-hulc/Rosselló-Batle, B., Ribas, C., Moià-Pol, A., & Martínez-Moll, V. (2015). An assessment of the relationship between embodied and thermal energy demands in dwellings in a Mediterranean climate. Energy and Buildings, 109, 230-244. doi:10.1016/j.enbuild.2015.10.007Sánchez Ramos, J., Guerrero Delgado, Mc., Álvarez Domínguez, S., Molina Félix, J. L., Sánchez de la Flor, F. J., & Tenorio Ríos, J. A. (2019). Systematic Simplified Simulation Methodology for Deep Energy Retrofitting Towards Nze Targets Using Life Cycle Energy Assessment. Energies, 12(16), 3038. doi:10.3390/en12163038Catalogue of Constructive Elements of the TBC 2011 https://itec.cat/cec/Construction Technology of Catalonia (Instituto de Tecnología de la Construcción: ITec) https://en.itec.cat/Ministry of Development Support Document of the DB HE1 for the calculation of Characteristic Parameters of the Building Envelope (DA DB-HE/1) 2015 https://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/DA_DB-HE-1_Calculo_de_parametros_caracteristicos_de_la_envolvente.pdfCondiciones de Aceptación de Procedimientos Alternativos a LIDER y CALENER https://www.idae.es/publicaciones/condiciones-de-aceptacion-de-procedimientos-alternativos-lider-y-calenerDesign Builder Software, ANSI/ASHRAE Standard 140-2004 Building Thermal Envelope and Fabric Load Tests 2006 http://www.designbuilder.co.uk/documents/ANSI_ASHRAE.pdfDatabase 2019 https://www.five.es/productos/herramientas-on-line/visualizador-2019/Haase, M., Marques da Silva, F., & Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings, 41(4), 361-373. doi:10.1016/j.enbuild.2008.11.008Lau, A. K. K., Salleh, E., Lim, C. H., & Sulaiman, M. Y. (2016). Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: The case of Malaysia. International Journal of Sustainable Built Environment, 5(2), 387-399. doi:10.1016/j.ijsbe.2016.04.004Al-ajmi Farraj F., & Hanby, V. I. (2008). Simulation of energy consumption for Kuwaiti domestic buildings. Energy and Buildings, 40(6), 1101-1109. doi:10.1016/j.enbuild.2007.10.010Raheem, A. A., Issa, R. R., & Olbina, S. (2013). Solar transmittance analysis of different types of sunshades in the Florida climate. Building Simulation, 7(1), 3-11. doi:10.1007/s12273-013-0137-4Valladares-Rendón, L. G., & Lo, S.-L. (2014). Passive shading strategies to reduce outdoor insolation and indoor cooling loads by using overhang devices on a building. Building Simulation, 7(6), 671-681. doi:10.1007/s12273-014-0182-7Huang, Y., Niu, J., & Chung, T. (2014). Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates. Applied Energy, 134, 215-228. doi:10.1016/j.apenergy.2014.07.100Ng, P. K., Mithraratne, N., & Kua, H. W. (2013). Energy analysis of semi-transparent BIPV in Singapore buildings. Energy and Buildings, 66, 274-281. doi:10.1016/j.enbuild.2013.07.029Ihara, T., Gao, T., Grynning, S., Jelle, B. P., & Gustavsen, A. (2015). Aerogel granulate glazing facades and their application potential from an energy saving perspective. Applied Energy, 142, 179-191. doi:10.1016/j.apenergy.2014.12.05
Current clinical spectrum of common variable immunodeficiency in Spain: The multicentric nationwide GTEM-SEMI-CVID registry
Common variable immunodeficiency (CVID) constitutes a heterogenic group of primary immunodeficiency disorders with a wide-ranging clinical spectrum. CVID-associated non-infectious morbidity constitutes a major challenge requiring a full understanding of its pathophysiology and its clinical importance and global variability, especially considering the broad clinical, genetic, and regional heterogeneity of CVID disorders. This work aimed to develop a nationwide, multicenter, retrospective study over a 3-year period describing epidemiological, clinical, laboratory, therapeutic, and prognostic features of 250 CVID patients in Spain. The mean diagnostic delay was around 10 years and most patients initially presented with infectious complications followed by non-infectious immune disorders. However, infectious diseases were not the main cause of morbimortality. Non-infectious lung disease was extraordinarily frequent in our registry affecting approximately 60% of the patients. More than one-third of the patients in our cohort showed lymphadenopathies and splenomegaly in their follow-up, and more than 33% presented immune cytopenias, especially Evans' syndrome. Gastrointestinal disease was observed in more than 40% of the patients. Among biopsied organs in our cohort, benign lymphoproliferation was the principal histopathological alteration. Reaching 15.26%, the global prevalence of cancer in our registry was one of the highest reported to date, with non-Hodgkin B lymphoma being the most frequent. These data emphasize the importance of basic and translational research delving into the pathophysiological pathways involved in immune dysregulation and diffuse lymphocytic infiltration. This would reveal new tailored strategies to reduce immune complications, and the associated healthcare burden, and ensure a better quality of life for CVID patients
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries