9 research outputs found

    Worldwide Research on Plant Defense against Biotic Stresses as Improvement for Sustainable Agriculture

    Get PDF
    Agriculture is the basis for food production on a global scale. Sustainable agriculture tries to improve or maintain the quality of food without compromising the environment. As sessile organisms, plants cannot avoid adverse environmental conditions and contact with other living organisms. The damage caused to plants by other living organisms such as parasites and pathogens (virus, bacteria, fungi, nematodes or insects) brings about what is known as biotic stress. Plants are constantly exposed to biotic stress, which causes changes in plant metabolism involving physiological damages that lead to a reduction of their productivity. To fight biotic stress, plants have developed sophisticated defense mechanisms. Thus, understanding plant defense mechanisms might prevent important crop and economic losses. In this article, a bibliometric analysis of biotic stress is carried out. Different aspects of the publications are analyzed, such as publication type, research field, journal type, countries and their institutions, as well as the keyword occurrence frequency, and finally special attention is paid to the plant studied by the leading countries and institutions. As expected, journals selected by authors to publish their relevant findings are plant-specific journals. However, it should be noted that the fourth position, in terms of the number of publications per journal, is occupied by BMC Genomics journal. Such a journal considers mainly articles on genomics, which indicates the involvement of genetic factors in the control of biotic stress. Analysis of the keywords used in publications about biotic stress shows the great interest in the biotic–abiotic stress interaction, in the gene expression regulation in plants as well as phytohormones in the current research. In short, the great effort made by the scientific community in the biotic and abiotic stresses field with the aim to understand, regulate and control plant damages caused by biotic stress agents will help in the development of sustainable agriculture

    Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis

    Get PDF
    Grain cereals such as wheat, barley, rice, and maize are the nutritional basis of humans and animals worldwide. Thus, these crop plants are essential in terms of global food security. We conducted a bibliometric assessment of scientific documents and patents related to wheat and barley through the Scopus database. The number of documents published per year, their affiliation and corresponding scientific areas, the publishing journals, document types and languages were metricized. The main keywords included in research publications concerning these crops were also analysed globally and clustered in thematic groups. In the case of keywords related to agronomy or genetics and molecular biology, we considered documents dated up to 1999, and from 2000 to 2018, separately. Comparison of the results obtained for wheat and barley revealed some remarkable different trends, for which the underlying reasons are further discussed

    Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit

    Full text link
    [EN] Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene ARLEQUIN/TOMATO AGAMOUS-LIKE1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato.This work was supported by the Ministerio de Ciencia e Innovacion (grant nos. BIO2009-11484, AGL2012-32613, AGL2012-40150-C03-01, and AGL2012-40150-C03-02) and by the European Commission through the Junta para la Ampliacion de Estudios-Doc program of the Consejo Superior de Investigaciones Cientificas (to B.P.).Giménez Caminero, ME.; Domínguez, E.; Pineda Chaza, BJ.; Heredia, A.; Moreno Ferrero, V.; Lozano, R.; Angosto, T. (2015). Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit. Plant Physiology. 168(3):1036-1048. doi:10.1104/pp.15.00469S10361048168

    TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development

    Full text link
    [EN] Within the tomato MADS-box gene family, TOMATO AGAMOUS1 (TAG1) and ARLEQUIN/TOMATO AGAMOUS LIKE1 (hereafter referred to as TAGL1) are, respectively, members of the euAG and PLE lineages of the AGAMOUS clade. They perform crucial functions specifying stamen and carpel development in the flower and controlling late fruit development. To gain insight into the roles of TAG1 and TAGL1 genes and to better understand their functional redundancy and diversification, we characterized single and double RNAi silencing lines of these genes and analyzed expression profiles of regulatory genes involved in reproductive development. Double RNAi lines did show cell abnormalities in stamens and carpels and produced extremely small fruit-like organs displaying some sepaloid features. Expression analyses indicated that TAG1 and TAGL1 act together to repress fourth whorl sepal development, most likely through the MACROCALYX gene. Results also proved that TAG1 and TAGL1 have diversified their functions in fruit development: while TAG1 controls placenta and seed formation, TAGL1 participates in cuticle development and lignin biosynthesis inhibition. It is noteworthy that both TAG1 and double RNAi plants lacked seed development due to abnormalities in pollen formation. This seedless phenotype was not associated with changes in the expression of B-class stamen identity genes Tomato MADS-box 6 and Tomato PISTILLATA observed in silencing lines, suggesting that other regulatory factors should participate in pollen formation. Taken together, results here reported support the idea that both redundant and divergent functions of TAG1 and TAGL1 genes are needed to control tomato reproductive development.This work was supported by the Spanish Ministry of Economy and Competitiveness (Grant Numbers AGL2012-40150-C03-01, AGL2012-40150-C03-02 and AGL2015-64991-C3-1-R); and the European Commission through the JAE-Doc Program of the Spanish National Research Council (CSIC) (Grant Number AGL2012-40150-C03-01 to B.P.).Giménez Caminero, ME.; Castañeda, L.; Pineda Chaza, BJ.; Pan, IL.; Moreno Ferrero, V.; Angosto, T.; Lozano, R. (2016). TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Molecular Biology. 91(4-5):513-531. https://doi.org/10.1007/s11103-016-0485-4S513531914-

    Nuevo cultivar con frutos y sépalos convertidos en frutos de alto interés para su consumo fresco y procesado industrial

    Get PDF
    Número de publicación: 2 341 527 21 Número de solicitud: 200900003 51 Int. Cl.: C12N 15/82 (2006.01) A01H 5/00 (2006.01Nuevo cultivar con frutos y sépalos convertidos en frutos de alto interés para su consumo fresco y procesado industrial. En la presente invención se describen secuencias de nucleótidos capaces de incrementar la expresión de un gen de desarrollo reproductivo lo que tiene como resultado la generación de cultivares con un fruto de alto interés para su consumo fresco y procesado industrial caracterizado por poseer características mejoradas respecto de los cultivares conocidos de variedades comerciales. Estos nuevos cultivares tienen el cáliz de la flor carnoso y convertido en fruto. El fruto verdadero y el cáliz tienen mayores niveles de azúcares y licopeno y un mayor contenido en grados Brix. Además, exhiben una mayor tasa de cuajado de fruto y tienen inhibida la zona de abscisión del fruto, lo que facilita la recolección mecánica.Universidad de Almerí

    Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival

    Full text link
    [EN] Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the ratelimiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants.This work was supported by research grants from the Spanish Ministry of Economy and Competitiveness and the UE-European Regional Development Fund (AGL2015-64991-C3-1-R, and AGL2015-64991-C3-3-R), and Junta de Andalucia (P12-AGR-1482). PhD fellowship to M.G.-A. was funded by the FPU Programme of the Spanish Ministry of Science and Innovation. The authors thank research facilities provided by the Campus de Excelencia Internacional Agroalimentario (CeiA3).Garcia-Alcazar, M.; Giménez Caminero, ME.; Pineda Chaza, BJ.; Capel, C.; García Sogo, B.; Sánchez Martín-Sauceda, S.; Yuste-Lisbona, FJ.... (2017). Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival. Scientific Reports. 7:1-12. https://doi.org/10.1038/srep45333112

    Estudios funcionales de la tirosinasa en el desarrollo de la retina de mamíferos

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 18-01-200

    Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis

    Full text link
    Grain cereals such as wheat, barley, rice, and maize are the nutritional basis of humans and animals worldwide. Thus, these crop plants are essential in terms of global food security. We conducted a bibliometric assessment of scientific documents and patents related to wheat and barley through the Scopus database. The number of documents published per year, their affiliation and corresponding scientific areas, the publishing journals, document types and languages were metricized. The main keywords included in research publications concerning these crops were also analysed globally and clustered in thematic groups. In the case of keywords related to agronomy or genetics and molecular biology, we considered documents dated up to 1999, and from 2000 to 2018, separately. Comparison of the results obtained for wheat and barley revealed some remarkable different trends, for which the underlying reasons are further discussed

    Nuevo cultivar con frutos y sépalos convertidos en frutos de alto interés para su consumo fresco y procesado industrial

    Get PDF
    Nuevo cultivar con frutos y sépalos convertidos en frutos de alto interés para su consumo fresco y procesado industrial. En la presente invención se describen secuencias de nucleótidos capaces de incrementar la expresión de un gen de desarrollo reproductivo lo que tiene como resultado la generación de cultivares con un fruto de alto interés para su consumo fresco y procesado industrial caracterizado por poseer características mejoradas respecto de los cultivares conocidos de variedades comerciales. Estos nuevos cultivares tienen el cáliz de la flor carnoso y convertido en fruto. El fruto verdadero y el cáliz tienen mayores niveles de azúcares y licopeno y un mayor contenido en grados Brix. Además, exhiben una mayor tasa de cuajado de fruto y tienen inhibida la zona de abscisión del fruto, lo que facilita la recolección mecánica.Universidad Politécnica de Valencia, Universidad de Almería, Consejo Superior de Investigaciones Científicas (España)A1 Solicitud de patente con informe sobre el estado de la técnic
    corecore