8 research outputs found

    Role of anti-osteopontin antibodies in multiple sclerosis and experimental autoimmune encephalomyelitis

    Get PDF
    Osteopontin (OPN) is highly expressed in demyelinating lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). OPN is cleaved by thrombin into N- (OPN-N) and C-terminal (OPN-C) fragments with different ligands and functions. In EAE, administering recombinant OPN induces relapses, whereas treatment with anti-OPN antibodies ameliorates the disease. Anti-OPN autoantibodies (autoAbs) are spontaneously produced during EAE but have never been detected in MS. The aim of the study was to evaluate anti-OPN autoAbs in the serum of MS patients, correlate them with disease course, and recapitulate the human findings in EAE. We performed ELISA in the serum of 122 patients collected cross-sectionally, and 50 patients with relapsing-remitting (RR) disease collected at diagnosis and followed longitudinally for 10 years. In the cross-sectional patients, the autoAb levels were higher in the RR patients than in the primary- and secondary-progressive MS and healthy control groups, and they were highest in the initial stages of the disease. In the longitudinal group, the levels at diagnosis directly correlated with the number of relapses during the following 10 years. Moreover, in patients with active disease, who underwent disease-modifying treatments, autoAbs were higher than in untreated patients and were associated with low MS severity score. The autoAb displayed neutralizing activity and mainly recognized OPN-C rather than OPN-N. To confirm the clinical effect of these autoAbs in vivo, EAE was induced using myelin oligodendrocyte glycoprotein MOG35-55 in C57BL/6 mice pre-vaccinated with ovalbumin (OVA)-linked OPN or OVA alone. We then evaluated the titer of antibodies to OPN, the clinical scores and in vitro cytokine secretion by spleen lymphocytes. Vaccination significantly induced antibodies against OPN during EAE, decreased disease severity, and the protective effect was correlated with decreased T cell secretion of interleukin 17 and interferon-\u3b3 ex vivo. The best effect was obtained with OPN-C, which induced significantly faster and more complete remission than other OPN vaccines. In conclusion, these data suggest that production of anti-OPN autoAbs may favor remission in both MS and EAE. Novel strategies boosting their levels, such as vaccination or passive immunization, may be proposed as a future strategy in personalized MS therapy

    IL-17 protects T cells from apoptosis and contributes to development of ALPS-like phenotypes

    No full text
    In autoimmune/lymphoproliferative syndrome (ALPS), defective Fas death receptor function causes lymphadenomegaly/splenomegaly, the expansion of T-cell receptor \u3b1\u3b2(+) CD4/CD8 double-negative T cells, and frequent development of hematologic autoimmunity. Dianzani autoimmune lymphoproliferative disease (DALD) has a similar phenotype but lacks the expansion of double-negative T cells. This work shows that patients with ALPS and DALD have high serum levels of interleukin 17A (IL-17A), IL-17F, and IL-17AF, which are involved in several autoimmune diseases, and that their T cells show increased secretion of these cytokines upon activation in vitro. The following data indicate that these cytokines may contribute to ALPS and DALD: (1) recombinant IL-17A and IL-17F significantly inhibit Fas-induced cell death in Fas-sensitive T cells from healthy donors; (2) this inhibitory effect is also induced by the patients' serum and is reversed by anti-IL-17A antibodies; (3) IL-17A neutralization substantially increases Fas-induced cell death in T cells from ALPS and DALD patients in vitro; and (4) treatment with anti-IL-17A antibodies ameliorates the autoimmune manifestations and, at a lesser extent, the lymphoproliferative phenotype and prolongs survival in MRLlpr/lpr mice, which are an animal model of ALPS. These data suggest that IL-17A and IL-17F could be targeted therapeutically to improve Fas function in ALPS and DALD

    ICOS-ligand triggering impairs osteoclast differentiation and function in vitro and in vivo

    No full text
    Osteoblasts, osteocytes, and osteoclasts (OCs) are involved in the bone production and resorption, which are crucial in bone homeostasis. OC hyperactivation plays a role in the exaggerated bone resorption of diseases such as osteoporosis, rheumatoid arthritis, and osteolytic tumor metastases. This work stems from the finding that OCs can express B7h (ICOS-Ligand), which is the ligand of the ICOS T cell costimulatory molecule. Because recent reports have shown that, in endothelial, dendritic, and tumor cells, B7h triggering modulates several activities of these cells, we analyzed the effect of B7h triggering by recombinant ICOS-Fc on OC differentiation and function. The results showed that ICOS-Fc inhibits RANKL-mediated differentiation of human monocyte-derived OC-like cells (MDOCs) by inhibiting the acquirement of the OC morphology, the CD14- cathepsin K+ phenotype, and the expression of tartrate-resistant acid phosphatase, OSCAR, NFATc1, and DC-STAMP. Moreover, ICOS-Fc induces a reversible decrease in the sizes of cells and nuclei and cathepsin K expression in mature MDOCs. Finally, ICOS-Fc inhibits the osteolytic activities of MDOCs in vitro and the development of bone loss in ovariectomized or soluble RANKL-treated mice. These findings open a novel field in the pharmacological use of agonists and antagonists of the ICOS-B7h system
    corecore