395 research outputs found

    Extended parametric representation of compressor fans and turbines. Volume 1: CMGEN user's manual

    Get PDF
    A modeling technique for fans, boosters, and compressors has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. The fans and compressors are assumed to be multi-stage machines incorporating front variable stators. The boosters are assumed to be fixed geometry machines. The modeling technique has been incorporated into time sharing program to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and examples cases, it is suitable as a user's manual. This report is the first of a three volume set describing the parametric representation of compressors, fans, and turbines. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulating Flow Fan)

    Quiet Clean Short-haul Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow

    Get PDF
    The fan aerodynamic and aeromechanical performance tests of the quiet clean short haul experimental engine under the wing fan and inlet with a simulated core flow are described. Overall forward mode fan performance is presented at each rotor pitch angle setting with conventional flow pressure ratio efficiency fan maps, distinguishing the performance characteristics of the fan bypass and fan core regions. Effects of off design bypass ratio, hybrid inlet geometry, and tip radial inlet distortion on fan performance are determined. The nonaxisymmetric bypass OGV and pylon configuration is assessed relative to both total pressure loss and induced circumferential flow distortion. Reverse mode performance, obtained by resetting the rotor blades through both the stall pitch and flat pitch directions, is discussed in terms of the conventional flow pressure ratio relationship and its implications upon achievable reverse thrust. Core performance in reverse mode operation is presented in terms of overall recovery levels and radial profiles existing at the simulated core inlet plane. Observations of the starting phenomena associated with the initiation of stable rotor flow during acceleration in the reverse mode are briefly discussed. Aeromechanical response characteristics of the fan blades are presented as a separate appendix, along with a description of the vehicle instrumentation and method of data reduction

    Poisonings Associated with Intubation: US National Poison Data System Exposures 2000-2013.

    Get PDF
    Patients may be intubated after exposure to a variety of substances because of respiratory failure, CNS sedation, pulmonary pathology, or cardiovascular instability. However, there is little data describing the types of substances that are associated with endotracheal intubation or the rates of intubation after these exposures. Evaluation of this association may inform future research on intubation after exposures to specific substances and guide poison prevention education. Our objective was to determine which exposures were commonly associated with intubation using the data from National Poison Data System (NPDS). The NPDS tracks data from potential exposures to substances reported to all American Association of Poison Control Centers. We performed a retrospective analysis of NPDS data from January 1st, 2000 to December 31st, 2013 to identify human exposures to substances that were associated with endotracheal intubation. Descriptive statistics were used to analyze the data. There were 93,474 single substance exposures and 228,507 multiple substance exposures that were associated with intubation. The most common exposures to substances that were associated with intubation were atypical antipsychotics (7.4 %) for single exposures and benzodiazepines (27.4 %) for multiple exposures. Within each age group, the most common known exposures to substances were for patients under 6 years, clonidine for single and multiple exposures; for patients aged 6-12 years, clonidine for single exposures and atypical antipsychotics for multiple exposures; for patients aged 13-19 years, atypical antipsychotics for single and multiple exposures; and for patients over 19 years, atypical antipsychotics for single exposures and benzodiazepines for multiple exposures. From 2000-2013, the exposures to substances most commonly associated with intubation varied by single versus multiple exposures and by age. This study helps clarify the exposures to substances that are associated with intubation reported to poison centers in the USA

    Complexity Characterization in a Probabilistic Approach to Dynamical Systems Through Information Geometry and Inductive Inference

    Full text link
    Information geometric techniques and inductive inference methods hold great promise for solving computational problems of interest in classical and quantum physics, especially with regard to complexity characterization of dynamical systems in terms of their probabilistic description on curved statistical manifolds. In this article, we investigate the possibility of describing the macroscopic behavior of complex systems in terms of the underlying statistical structure of their microscopic degrees of freedom by use of statistical inductive inference and information geometry. We review the Maximum Relative Entropy (MrE) formalism and the theoretical structure of the information geometrodynamical approach to chaos (IGAC) on statistical manifolds. Special focus is devoted to the description of the roles played by the sectional curvature, the Jacobi field intensity and the information geometrodynamical entropy (IGE). These quantities serve as powerful information geometric complexity measures of information-constrained dynamics associated with arbitrary chaotic and regular systems defined on the statistical manifold. Finally, the application of such information geometric techniques to several theoretical models are presented.Comment: 29 page

    Search for short baseline nu(e) disappearance with the T2K near detector

    Get PDF
    8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA

    Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target

    Get PDF
    111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
    corecore