62 research outputs found

    Internet of Things in Sustainable Energy Systems

    Get PDF
    Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy systems approaches, methodologies, scenarios, and tools is presented with a detailed discussion of different sensing and communications techniques. This IoT approach in energy systems is envisioned to enhance the bidirectional interchange of network services in grid by using Internet of Things in grid that will result in enhanced system resilience, reliable data flow, and connectivity optimization. Moreover, the sustainable energy IoT research challenges and innovation opportunities are also discussed to address the complex energy needs of our community and promote a strong energy sector economy

    Ammonia Production Technologies

    Get PDF

    Comprehensive analysis of proteins secreted by Trichophyton rubrum and Trichophyton violaceum under in vitro conditions.

    No full text
    Dermatophytes cause most superficial mycoses in humans and animals. Their pathogenicity is probably linked with the secretion of proteins degrading keratinised structures. Using 2D-PAGE and a shotgun mass spectrometry approach, we identified 80 proteins from Trichophyton rubrum and Trichophyton violaceum secretomes, under conditions mimicking those in the host. Identified proteins included endo- and exoproteases, other hydrolases, and oxidoreductases. Our findings can contribute to a better understanding of the virulence mechanisms of the two species and the different types of infection they cause

    Gel-free sample preparation techniques and bioinformatic enrichment analysis to in depth characterise the cell wall proteome of mycobacteria

    No full text
    The comprehensive characterisation of the cell wall proteome of mycobacteria is of considerable relevance to both the discovery of new drug targets as well as to the design of new vaccines against Mycobacterium tuberculosis. However, due to its extremely hydrophobic nature, the coverage of proteomic studies of this subcellular compartment is still far from complete. Here, we report novel gel-free cell wall sample preparation procedures and quantitative LC–MS/MS measurements on a Q Exactive mass spectrometer. We combine these with a novel post-measurement bioinformatic analysis to filter out likely cytosolic contaminants. This reveals a subset of proteins that are highly enriched for cell wall proteins. The success of this approach is verified by peptide-centric measurement of the abundance of known subcellular markers, as well as analysis of the percentage of predicted membrane proteins within the purified fraction. While M. smegmatis was used during this study to establish and optimise the sample preparation procedures, these can easily be applied to other mycobacterial species, such as M. bovis BCG or M. tuberculosis. • Improved gel-free cell wall sample preparation gives higher yields of tryptic peptides for LC–MS/MS measurement. • Higher yields of tryptic peptides provide better quantitation and coverage of cell wall proteome. • Post-measurement enrichment analysis filters out high abundance cytosolic contaminants that have carried through the experimental analysis. Method name: Cell wall enrichment and bioinformatic enrichment analysis, Keywords: Cell wall proteomics, Mycobacteria, Proteomics, Bioinformatic enrichment analysi

    Selected Gut Bacteria from Water Monitor Lizard Exhibit Effects against Pathogenic Acanthamoeba castellanii Belonging to the T4 Genotype

    No full text
    Water monitor lizards (WMLs) reside in unhygienic and challenging ecological surroundings and are routinely exposed to various pathogenic microorganisms. It is possible that their gut microbiota produces substances to counter microbial infections. Here we determine whether selected gut bacteria of water monitor lizards (WMLs) possess anti-amoebic properties using Acanthamoeba castellanii of the T4 genotype. Conditioned media (CM) were prepared from bacteria isolated from WML. The CM were tested using amoebicidal, adhesion, encystation, excystation, cell cytotoxicity and amoeba-mediated host cell cytotoxicity assays in vitro. Amoebicidal assays revealed that CM exhibited anti-amoebic effects. CM inhibited both excystation and encystation in A. castellanii. CM inhibited amoebae binding to and cytotoxicity of host cells. In contrast, CM alone showed limited toxic effects against human cells in vitro. Mass spectrometry revealed several antimicrobials, anticancer, neurotransmitters, anti-depressant and other metabolites with biological functions. Overall, these findings imply that bacteria from unusual places, such as WML gut, produce molecules with anti-acanthamoebic capabilities
    corecore