211 research outputs found
Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework
Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes
Agricultural land-use change and ash (Fraxinus excelsior L.) colonization in Pyrenean landscapes: an interdisciplinary case study
ONLINE FIRSTInternational audienceChanges in agricultural land use are responsible for significant modifications in mountain landscapes. This study is part of an interdisciplinary research on the processes and consequences of spontaneous afforestation of Pyrenean landscapes by ash, and the possibilities for its management. We address the relationships between vegetation dynamics and land-use change from the combination of an agricultural study of change in farm management and an ecological study of grassland colonization by ash. In the framework of a village case study, we characterized parcels management and land-use histories, and analyzed the dynamics of the composition of grassland vegetation communities. From a joint analysis of the results obtained in each discipline, we discuss the limitations and comple-mentarities of the two approaches for the interdisciplinary assessment of the afforestation process
Evaluating the spatial uncertainty of future land abandonment in a mountain valley (Vicdessos, Pyrenees-France) : insights form model parameterization and experiments
International audienceEuropean mountains are particularly sensitive to climatic disruptions and land use changes. The latter leads to high rates of natural reforestation over the last 50 years. Faced with the challenge of predicting possible impacts on ecosystem services, LUCC models offer new opportunities for land managers to adapt or mitigate their strategies. Assessing the spatial uncertainty of future LUCC is crucial for the defintion of sustainable land use strategies. However, the sources of uncertainty may differ, including the input parameters, the model itself, and the wide range of possible futures. The aim of this paper is to propose a method to assess the probability of occurrence of future LUCC that combines the inherent uncertainty of model parameterization and the ensemble uncertainty of the future based scenarios. For this purpose, we used the Land Change Modeler tool to simulate future LUCC on a study site located in the Pyrenees Mountains (France) and 2 scenarios illustratins 2 land use strategies. The model was parameterized with the same driving factors used for its calibration. The defintion of static vs. dynamic and quantitative vs. qualitative (discretized) driving factors, and their combination resulted in 4 parameterizations. The combination of model outcomes produced maps of spatial uncertainty of future LUCC. This work involves literature to future-based LUCC studies. It goes beyond the uncertainty of simulation models by integrating the unceertainty of the future to provide maps to help decision makers and land managers
Exploiting the genetic diversity of maize using a combined metabolomic, enzyme activity profiling, and metabolic modelling approach to link leaf physiology to kernel yield
A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically distant maize (Zea mays) lines from Europe and America. Considerable differences were detected between the lines when leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling, the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of enzymes involved in the C4 photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate. Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels
Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth
Transgenic tomato (Solanum lycopersicum) plants were generated targeting the cytosolic NADP-dependent isocitrate dehydrogenase gene (SlICDH1) via the RNA interference approach. The resultant transformants displayed a relatively mild reduction in the expression and activity of the target enzyme in the leaves. However, biochemical analyses revealed that the transgenic lines displayed a considerable shift in metabolism, being characterized by decreases in the levels of the TCA cycle intermediates, total amino acids, photosynthetic pigments, starch and NAD(P)H. The plants showed little change in photosynthesis with the exception of a minor decrease in maximum photosynthetic efficiency (Fv/Fm), and a small decrease in growth compared to the wild type. These results reveal that even small changes in cytosolic NADP-dependent isocitrate dehydrogenase activity lead to noticeable alterations in the activities of enzymes involved in primary nitrate assimilation and in the synthesis of 2-oxoglutarate derived amino acids. These data are discussed within the context of current models for the role of the various isoforms of isocitrate dehydrogenase within plant amino acid metabolism
Genetic Analysis of Central Carbon Metabolism Unveils an Amino Acid Substitution That Alters Maize NAD-Dependent Isocitrate Dehydrogenase Activity
Background: Central carbon metabolism (CCM) is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays), the most diverse model crop species, to study the genetics of CCM is a particularly attractive system. Methodology/Principal Findings: We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41), in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis), the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication. Conclusions/Significance: Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites
Identifying Neighborhoods of Coordinated Gene Expression and Metabolite Profiles
In this paper we investigate how metabolic network structure affects any coordination between transcript and metabolite profiles. To achieve this goal we conduct two complementary analyses focused on the metabolic response to stress. First, we investigate the general size of any relationship between metabolic network gene expression and metabolite profiles. We find that strongly correlated transcript-metabolite profiles are sustained over surprisingly long network distances away from any target metabolite. Secondly, we employ a novel pathway mining method to investigate the structure of this transcript-metabolite relationship. The objective of this method is to identify a minimum set of metabolites which are the target of significantly correlated gene expression pathways. The results reveal that in general, a global regulation signature targeting a small number of metabolites is responsible for a large scale metabolic response. However, our method also reveals pathway specific effects that can degrade this global regulation signature and complicates the observed coordination between transcript-metabolite profiles
A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism
Background: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA) plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. Principal Findings: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. Significance: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology
Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress
To cope with the various environmental stresses resulting in reactive oxygen species (ROS) production plant metabolism is known to be altered specifically under different stresses. After overcoming the stress the metabolism should be reconfigured to recover basal operation however knowledge concerning how this is achieved is cursory. To investigate the metabolic recovery of roots following oxidative stress, changes in metabolite abundance and carbon flow were analysed. Arabidopsis roots were treated by menadione to elicit oxidative stress. Roots were fed with 13C labelled glucose and the redistribution of isotope was determined in order to study carbon flow. The label redistribution through many pathways such as glycolysis, the tricarboxylic acid (TCA) cycle and amino acid metabolism were reduced under oxidative stress. After menadione removal many of the stress-related changes reverted back to basal levels. Decreases in amounts of hexose phosphates, malate, 2-oxoglutarate, glutamate and aspartate were fully recovered or even increased to above the control level. However, some metabolites such as pentose phosphates and citrate did not recover but maintained their levels or even increased further. The alteration in label redistribution largely correlated with that in metabolite abundance. Glycolytic carbon flow reverted to the control level only 18 h after menadione removal although the TCA cycle and some amino acids such as aspartate and glutamate took longer to recover. Taken together, plant root metabolism was demonstrated to be able to overcome menadione-induced oxidative stress with the differential time period required by independent pathways suggestive of the involvement of pathway specific regulatory processes
Carbon Dynamics, Development and Stress Responses in Arabidopsis: Involvement of the APL4 Subunit of ADP-Glucose Pyrophosphorylase (Starch Synthesis)
An Arabidopsis thaliana T-DNA insertional mutant was identified and characterized for enhanced tolerance to the singlet-oxygen-generating herbicide atrazine in comparison to wild-type. This enhanced atrazine tolerance mutant was shown to be affected in the promoter structure and in the regulation of expression of the APL4 isoform of ADP-glucose pyrophosphorylase, a key enzyme of the starch biosynthesis pathway, thus resulting in decrease of APL4 mRNA levels. The impact of this regulatory mutation was confirmed by the analysis of an independent T-DNA insertional mutant also affected in the promoter of the APL4 gene. The resulting tissue-specific modifications of carbon partitioning in plantlets and the effects on plantlet growth and stress tolerance point out to specific and non-redundant roles of APL4 in root carbon dynamics, shoot-root relationships and sink regulations of photosynthesis. Given the effects of exogenous sugar treatments and of endogenous sugar levels on atrazine tolerance in wild-type Arabidopsis plantlets, atrazine tolerance of this apl4 mutant is discussed in terms of perception of carbon status and of investment of sugar allocation in xenobiotic and oxidative stress responses
- …