1,194 research outputs found
Space station integrated wall design and penetration damage control
The analysis code BUMPER executes a numerical solution to the problem of calculating the probability of no penetration (PNP) of a spacecraft subject to man-made orbital debris or meteoroid impact. The codes were developed on a DEC VAX 11/780 computer that uses the Virtual Memory System (VMS) operating system, which is written in FORTRAN 77 with no VAX extensions. To help illustrate the steps involved, a single sample analysis is performed. The example used is the space station reference configuration. The finite element model (FEM) of this configuration is relatively complex but demonstrates many BUMPER features. The computer tools and guidelines are described for constructing a FEM for the space station under consideration. The methods used to analyze the sensitivity of PNP to variations in design, are described. Ways are suggested for developing contour plots of the sensitivity study data. Additional BUMPER analysis examples are provided, including FEMs, command inputs, and data outputs. The mathematical theory used as the basis for the code is described, and illustrates the data flow within the analysis
Space station integrated wall design and penetration damage control
A methodology was developed to allow a designer to optimize the pressure wall, insulation, and meteoroid/debris shield system of a manned spacecraft for a given spacecraft configuration and threat environment. The threat environment consists of meteoroids and orbital debris, as specified for an arbitrary orbit and expected lifetime. An overall probability of no penetration is calculated, as well as contours of equal threat that take into account spacecraft geometry and orientation. Techniques, tools, and procedures for repairing an impacted and penetrated pressure wall were developed and tested. These techniques are applied from the spacecraft interior and account for the possibility of performing the repair in a vacuum. Hypervelocity impact testing was conducted to: (1) develop and refine appropriate penetration functions, and (2) determine the internal effects of a penetration on personnel and equipment
Recommended from our members
Platelet-mediated metabolism of the common dietary flavonoid, quercetin.
BACKGROUND: Flavonoid metabolites remain in blood for periods of time potentially long enough to allow interactions with cellular components of this tissue. It is well-established that flavonoids are metabolised within the intestine and liver into methylated, sulphated and glucuronidated counterparts, which inhibit platelet function. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate evidence suggesting platelets which contain metabolic enzymes, as an alternative location for flavonoid metabolism. Quercetin and a plasma metabolite of this compound, 4'-O-methyl quercetin (tamarixetin) were shown to gain access to the cytosolic compartment of platelets, using confocal microscopy. High performance liquid chromatography (HPLC) and mass spectrometry (MS) showed that quercetin was transformed into a compound with a mass identical to tamarixetin, suggesting that the flavonoid was methylated by catechol-O-methyl transferase (COMT) within platelets. CONCLUSIONS/SIGNIFICANCE: Platelets potentially mediate a third phase of flavonoid metabolism, which may impact on the regulation of the function of these cells by metabolites of these dietary compounds
Recommended from our members
Cobimetinib and trametinib inhibit platelet MEK but do not cause platelet dysfunction
The MEK inhibitors cobimetinib and trametinib are used in combination with BRAF inhibitors to treat metastatic melanoma but increase rates of hemorrhage relative to BRAF inhibitors alone. Platelets express several members of the MAPK signalling cascade including MEK1 and MEK2 and ERK1 and ERK2 but their role in platelet function and haemostasis is ambiguous as previous reports have been contradictory. It is therefore unclear if MEK inhibitors might be causing platelet dysfunction and contributing to increased hemorrhage. In the present study we performed pharmacological characterisation of cobimetinib and trametinib in vitro to investigate potential for MEK inhibitors to cause platelet dysfunction.
We report that whilst both cobimetinib and trametinib are potent inhibitors of platelet MEK activity, treatment with trametinib did not alter platelet function. Treatment with cobimetinib results in inhibition of platelet aggregation, integrin activation, alpha-granule secretion and adhesion but only at suprapharmacological concentrations. We identified that the inhibitory effects of high concentrations of cobimetinib are associated with off-target inhibition on Akt and PKC. Neither inhibitor caused any alteration in thrombus formation on collagen under flow conditions in vitro.
Our findings demonstrate that platelets are able to function normally when MEK activity is fully inhibited, indicating MEK activity is dispensable for normal platelet function. We conclude that the MEK inhibitors cobimetinib and trametinib do not induce platelet dysfunction and are therefore unlikely to contribute to increased incidence of bleeding reported during MEK inhibitor therapy
Recommended from our members
GRID and docking analyses reveal a molecular basis for flavonoid inhibition of src-family kinase activity
Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase (PI3K), Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK, and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts.
We examined flavonoid (quercetin, apigenin and catechin) interactions with Src-family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts, and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src-family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays.
We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates
Recommended from our members
PPARγ agonists negatively regulate αIIbβ3 integrin outside-in signalling and platelet function through upregulation of protein kinase A activity
BACKGROUND:
Agonists for the peroxisome proliferator activated receptor PPARγ, have been shown to have inhibitory effects on platelet activity following stimulation by GPVI and GPCR agonists.
OBJECTIVES:
Profound effects on thrombus formation led us to suspect a role for PPARγ agonists in the regulation of integrin αIIbβ3 mediated signalling. Both GPVI and GPCR signalling pathways lead to αIIbβ3 activation, and signalling through αIIbβ3 plays a critical role in platelet function and normal haemostasis.
METHODS:
The effects of PPARγ agonists on the regulation of αIIbβ3 outside-in signalling was determined by monitoring the ability of platelets to adhere and spread on fibrinogen and undergo clot retraction. Effects on signalling components downstream of αIIbβ3 activation were also determined following adhesion to fibrinogen by western blotting.
RESULTS:
Treatment of platelets with PPARγ agonists inhibited platelet adhesion and spreading on fibrinogen and diminished clot retraction. A reduction in phosphorylation of several components of αIIbβ3 signalling, including the integrin β3 subunit, Syk, PLCγ2, FAK and Akt was also observed as a result of reduced interaction of the integrin β3 subunit with Gα13. Studies of VASP phosphorylation revealed that this was a due to an increase in PKA activity following treatment with PPARγ receptor agonists.
CONCLUSIONS:
This study provides further evidence for anti-platelet actions of PPARγ agonists, identifies a negative regulatory role for PPARγ agonists in the control of integrin αIIbβ3 outside-in signalling, and provides a molecular basis by which the PPARγ agonists negatively regulate platelet activation and thrombus formation
The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia
Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places. Through a combination of modelling techniques, a reliable method has been developed that explains environmental and biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management strategies
Recommended from our members
A humanized monoclonal antibody that inhibits platelet-surface ERp72 reveals a role for ERp72 in thrombosis
Background: Within the endoplasmic reticulum, thiol isomerase enzymes modulate the formation and rearrangement of disulphide bonds in newly folded proteins entering the secretory pathway to ensure correct protein folding. In addition to their intracellular importance, thiol isomerases have been recently identified to be present on the surface of a number of cell types where they are important for cell function. Several thiol isomerases are known to be present on the resting platelet surface including PDI, ERp5 and ERp57 and levels are increased following platelet activation. Inhibition of the catalytic activity of these enzymes results in diminished platelet function and thrombosis.
Aim: We previously determined that ERp72 is present at the resting platelet surface and levels increase upon platelet activation, however its functional role on the cell surface was unclear. We aimed to investigate the role of ERp72 in platelet function and its role in thrombosis.
Methods: Using HuCAL technology, fully humanised Fc-null anti-ERp72 antibodies were generated. Eleven antibodies were screened for their ability to inhibit ERp72 activity and the most potent inhibitory antibody (anti-ERp72) selected for further testing in platelet functional assays.
Results and conclusions: Anti-ERp72 inhibited platelet aggregation, granule secretion, calcium mobilisation and integrin activation revealing an important role for extracellular ERp72 in the regulation of platelet activation. Consistent with this, infusion of anti-ERp72 into mice protected against thrombosis
The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis
Platelets play a fundamental role in hemostasis and thrombosis. They are also involved in pathologic conditions resulting from blocked blood vessels, including myocardial infarction and ischemic stroke. Platelet adhesion, activation, and aggregation at sites of vascular injury are regulated by a diverse repertoire of tyrosine kinase–linked and G protein–coupled receptors. Src family kinases (SFKs) play a central role in initiating and propagating signaling from several platelet surface receptors; however, the underlying mechanism of how SFK activity is regulated in platelets remains unclear. CD148 is the only receptor-like protein tyrosine phosphatase identified in platelets to date. In the present study, we show that mutant mice lacking CD148 exhibited a bleeding tendency and defective arterial thrombosis. Basal SFK activity was found to be markedly reduced in CD148-deficient platelets, resulting in a global hyporesponsiveness to agonists that signal through SFKs, including collagen and fibrinogen. G protein–coupled receptor responses to thrombin and other agonists were also marginally reduced. These results highlight CD148 as a global regulator of platelet activation and a novel antithrombotic drug targe
Availability analysis of post-combustion carbon capture systems: minimum work input
Published versio
- …
