37 research outputs found

    Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease

    Get PDF
    BACKGROUND. The development of active tuberculosis disease has been shown to be multifactorial. Interactions between host and bacterial genotype may influence disease outcome, with some studies indicating the adaptation of M. tuberculosis strains to specific human populations. Here we investigate the role of the human leukocyte antigen (HLA) class I genes in this biological process. METHODS. Three hundred patients with tuberculosis from South Africa were typed for their HLA class I alleles by direct sequencing. Mycobacterium tuberculosis genotype classification was done by IS6110 restriction fragment length polymorphism genotyping and spoligotyping. RESULTS. We showed that Beijing strain occurred more frequently in individuals with multiple disease episodes (P < .001) with the HLA-B27 allele lowering the odds of having an additional episode (odds ratio, 0.21; P = .006). Associations were also identified for specific HLA types and disease caused by the Beijing, LAM, LCC, and Quebec strains. HLA types were also associated with disease caused by strains from the Euro-American or East Asian lineages, and the frequencies of these alleles in their sympatric human populations identified potential coevolutionary events between host and pathogen. CONCLUSIONS. This is the first report of the association of human HLA types and M. tuberculosis strain genotype, highlighting that both host and pathogen genetics need to be taken into consideration when studying tuberculosis disease development.Web of Scienc

    Validation and Optimization of Host Immunological Bio-Signatures for a Point-of-Care Test for TB Disease.

    Get PDF
    The development of a non-sputum-based, point-of-care diagnostic test for tuberculosis (TB) is a priority in the global effort to combat this disease, particularly in resource-constrained settings. Previous studies have identified host biomarker signatures which showed potential, but there is a need to validate and refine these for development as a test. We recruited 1,403 adults presenting with symptoms suggestive of pulmonary TB at primary healthcare clinics in six countries from West, East and Southern Africa. Of the study cohort, 326 were diagnosed with TB and 787 with other respiratory diseases, from whom we randomly selected 1005 participants. Using Luminex® technology, we measured the levels of 20 host biomarkers in serum samples which we used to evaluate the diagnostic accuracy of previously identified and novel bio-signatures. Our previously identified seven-marker bio-signature did not perform well (sensitivity: 89%, specificity: 60%). We also identified an optimal, two-marker bio-signature with a sensitivity of 94% and specificity of 69% in patients with no history of previous TB. This signature performed slightly better than C-reactive protein (CRP) alone. The cut-off value for a positive diagnosis differed for human immuno-deficiency virus (HIV)-positive and -negative individuals. Notably, we also found that no signature was able to diagnose TB adequately in patients with a prior history of the disease. We have identified a two-marker, pan-African bio-signature which is more robust than CRP alone and meets the World Health Organization (WHO) target product profile requirements for a triage test in both HIV-negative and HIV-positive individuals. This signature could be incorporated into a point-of-care device, greatly reducing the necessity for expensive confirmatory diagnostics and potentially reducing the number of cases currently lost to follow-up. It might also potentially be useful with individuals unable to provide sputum or with paucibacillary disease. We suggest that the performance of TB diagnostic signatures can be improved by incorporating the HIV-status of the patient. We further suggest that only patients who have never had TB be subjected to a triage test and that those with a history of previous TB be evaluated using more direct diagnostic techniques

    Distinct serum biosignatures are associated with different tuberculosis treatment outcomes.

    Get PDF
    Biomarkers for TB treatment response and outcome are needed. This study characterize changes in immune profiles during TB treatment, define biosignatures associated with treatment outcomes, and explore the feasibility of predictive models for relapse. Seventy-two markers were measured by multiplex cytokine array in serum samples from 78 cured, 12 relapsed and 15 failed treatment patients from South Africa before and during therapy for pulmonary TB. Promising biosignatures were evaluated in a second cohort from Uganda/Brazil consisting of 17 relapse and 23 cured patients. Thirty markers changed significantly with different response patterns during TB treatment in cured patients. The serum biosignature distinguished cured from relapse patients and a combination of two clinical (time to positivity in liquid culture and BMI) and four immunological parameters (TNF-?, sIL-6R, IL-12p40 and IP-10) at diagnosis predicted relapse with a 75% sensitivity (95%CI 0.38-1) and 85% specificity (95%CI 0.75-0.93). This biosignature was validated in an independent Uganda/Brazil cohort correctly classifying relapse patients with 83% (95%CI 0.58-1) sensitivity and 61% (95%CI 0.39-0.83) specificity. A characteristic biosignature with value as predictor of TB relapse was identified. The repeatability and robustness of these biomarkers require further validation in well-characterized cohorts

    Potential of Host Markers Produced by Infection Phase-Dependent Antigen-Stimulated Cells for the Diagnosis of Tuberculosis in a Highly Endemic Area

    Get PDF
    CITATION: Chegou, N. N. et al. 2012. Potential of host markers produced by infection phase-dependent antigen-stimulated cells for the diagnosis of tuberculosis in a highly endemic area. PLoS ONE, 7(6): e38501, doi:10.1371/journal.pone.0038501.The original publication is available at http://journals.plos.org/plosoneBackground: Recent interferon gamma (IFN-γ)-based studies have identified novel Mycobacterium tuberculosis (M.tb) infection phase-dependent antigens as diagnostic candidates. In this study, the levels of 11 host markers other than IFN-γ, were evaluated in whole blood culture supernatants after stimulation with M.tb infection phase-dependent antigens, for the diagnosis of TB disease. Methodology and Principal Findings: Five M.tb infection phase-dependent antigens, comprising of three DosR-regulon-encoded proteins (Rv2032, Rv0081, Rv1737c), and two resucitation promoting factors (Rv0867c and Rv2389c), were evaluated in a case-control study with 15 pulmonary TB patients and 15 household contacts that were recruited from a high TB incidence setting in Cape Town, South Africa. After a 7-day whole blood culture, supernatants were harvested and the levels of the host markers evaluated using the Luminex platform. Multiple antigen-specific host markers were identified with promising diagnostic potential. Rv0081-specific levels of IL-12(p40), IP-10, IL-10 and TNF-α were the most promising diagnostic candidates, each ascertaining TB disease with an accuracy of 100%, 95% confidence interval for the area under the receiver operating characteristics plots, (1.0 to 1.0). Conclusions: Multiple cytokines other than IFN-γ in whole blood culture supernatants after stimulation with M.tb infection phase-dependent antigens show promise as diagnostic markers for active TB. These preliminary findings should be verified in well-designed diagnostic studies employing short-term culture assays. © 2012 Chegou et al.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038501Publisher's versio

    A study of a distal lesion of substantia nigra neurons in the rat brain : a model for Parkinsonism

    No full text
    Thesis (M.Sc.(Biochemistry)) -- University of Stellenbosch, 1991.Full text to be digitised and attached to bibliographic record

    Transmission of tuberculosis in a high incidence urban community in South Africa.

    No full text
    BACKGROUND: The objective of this study was to identify risk factors for ongoing community transmission of tuberculosis (TB) in two densely populated urban communities with a high incidence rate of TB in Cape Town, South Africa. METHODS: Between 1993 and 1998 DNA fingerprints of mycobacterial isolates from TB patients were determined by restriction fragment length polymorphism (RFLP). Cases whose isolates shared identical fingerprint patterns were considered to belong to the same cluster and to be attributable to ongoing community transmission. RESULTS: The average annual notification rate of new smear positive TB was 238/100000. In all, 1023/1526 reported patients were culture positive, and RFLP was available for 768 (75%) of the isolates from these patients. Since some patients experienced more than one infection during the study period, 797 cases were included in the analysis. Of the cases, 575/797 (72%) were clustered. Smear-positive cases and those who were retreated after default were more likely to be clustered than smear-negative and new cases, respectively. Patients from Uitsig were more often part of large clusters than were patients from Ravensmead. Age, sex, year of diagnosis, and outcome of disease were not risk factors for clustering, nor for being the first case in a cluster, although various analytical approaches were used. CONCLUSIONS: The incidence and proportion of cases that are clustered in this area are higher than reported elsewhere. An overwhelming majority of TB cases in this area is attributed to ongoing community transmission, and only very few to reactivation. This may explain the lack of demographic risk factors for clustering

    Stability of Polymorphic GC-Rich Repeat Sequence-Containing Regions of Mycobacterium tuberculosis

    No full text
    Mycobacterium tuberculosis cultures were subjected to DNA fingerprinting with IS6110- and polymorphic GC-rich sequence (PGRS)-containing probes. The PGRS banding patterns remained highly stable during multiple cultures of specimens from one disease episode (0.5% changed) and during transmission in patients with close contact (1.9% changed). Characteristic PGRS-restriction fragment length polymorphism motifs for different strain groupings may indicate distant evolutionary events leading to the differentiation of M. tuberculosis strain lineages

    The risk of tuberculosis reinfection soon after cure of a first disease episode is extremely high in a hyperendemic community

    Get PDF
    CITATION: Uys, P., et al. 2015. The risk of tuberculosis reinfection soon after cure of a first disease episode is extremely high in a hyperendemic community. PLoS ONE, 10(12):1-13, doi:10.1371/journal.pone.0144487.The original publication is available at http://journals.plos.org/plosoneElevated rates of reinfection tuberculosis in various hyperendemic regions have been reported and, in particular, it has been shown that in a high-incidence setting near Cape Town, South Africa, the rate of reinfection tuberculosis (TB) disease after cure of a previous TB disease episode is about four times greater than the rate of first-time TB disease. It is not known whether this elevated rate is caused by a high reinfection rate due, for instance, to living circumstances, or a high rate of progress to disease specific to the patients, or both. In order to address that question we analysed an extensive data set from clinics attended by TB patients in the high-incidence setting near Cape Town, South Africa and found that, in fact, the (average) rate of reinfection (as opposed to the rate of reinfection disease) after cure of a previous TB disease episode is initially about 0.85 per annum. This rate diminishes rapidly over time and after about ten years this rate is similar to the rate of infection in the general population. Also, the rate of progress to disease after reinfection is initially high but declines in subsequent years down to the figure typical for the general population. These findings suggest that the first few months after cure of a TB disease episode form a critical period for controlling reinfection disease in a hyperendemic setting and that monitoring such cured patients could pre-empt a reinfection progressing to active disease.Publisher's versio

    Stability of Variable-Number Tandem Repeats of Mycobacterial Interspersed Repetitive Units from 12 Loci in Serial Isolates of Mycobacterium tuberculosis

    No full text
    Variable number tandem repeats (VNTRs) of elements named mycobacterial interspersed repetitive units (MIRUs) have previously been identified in 12 minisatellite loci of the Mycobacterium tuberculosis genome. These markers allow reliable high-throughput genotyping of M. tuberculosis and represent a portable approach to global molecular epidemiology of M. tuberculosis. To assess their temporal stability, we genotyped 123 serial isolates, separated by up to 6 years and belonging to a variety of distinct IS6110 restriction fragment length polymorphism (RFLP) families, from 56 patients who had positive sputum cultures. All 12 MIRU VNTR loci were completely identical within the groups of serial isolates in 55 out of 56 groups (98.2%), although 11 pairs of isolates from the same patients with conserved MIRU VNTRs displayed slightly different IS6110 RFLP profiles. In a single case, serial isolates with an unchanged IS6110 RFLP profile showed a change in 1 out of 12 MIRU VNTR loci. These results indicate that MIRU VNTRs are stable over time and therefore are suitable for reliable follow-up of patients chronically infected with tuberculosis over long periods. Moreover, they support MIRU VNTR genotyping as a powerful first-line method followed by subtyping by IS6110 RFLP to define ongoing transmission clusters

    The recombination landscape of the Khoe-San likely represents the upper limits of recombination divergence in humans.

    No full text
    BackgroundRecombination maps are  important resources for epidemiological and evolutionary analyses; however, there are currently no recombination maps representing any African population outside of those with West African ancestry. We infer the demographic history for the Nama, an indigenous Khoe-San population of southern Africa, and derive a novel, population-specific recombination map from the whole genome sequencing of 54 Nama individuals. We hypothesise that there are no publicly available recombination maps representative of the Nama, considering the deep population divergence and subsequent isolation of the Khoe-San from other African groups.ResultsWe show that the recombination landscape of the Nama does not cluster with any continental groups with publicly available representative recombination maps. Finally, we use selection scans as an example of how fine-scale differences between the Nama recombination map and the combined Phase II HapMap recombination map can impact the outcome of selection scans.ConclusionsFine-scale differences in recombination can meaningfully alter the results of a selection scan. The recombination map we infer likely represents an upper bound on the extent of divergence we expect to see for a recombination map in humans and would be of interest to any researcher that wants to test the sensitivity of population genetic or GWAS analysis to recombination map input
    corecore