39 research outputs found

    Expression, intracellular targeting and purification of HIV Nef variants in tobacco cells

    Get PDF
    Background Plants may represent excellent alternatives to classical heterologous protein expression systems, especially for the production of biopharmaceuticals and vaccine components. Modern vaccines are becoming increasingly complex, with the incorporation of multiple antigens. Approaches towards developing an HIV vaccine appear to confirm this, with a combination of candidate antigens. Among these, HIV-Nef is considered a promising target for vaccine development because immune responses directed against this viral protein could help to control the initial steps of viral infection and to reduce viral loads and spreading. Two isoforms of Nef protein can be found in cells: a full-length N-terminal myristoylated form (p27, 27 kDa) and a truncated form (p25, 25 kDa). Here we report the expression and purification of HIV Nef from transgenic tobacco. Results We designed constructs to direct the expression of p25 and p27 Nef to either the cytosol or the secretory pathway. We tested these constructs by transient expression in tobacco protoplasts. Cytosolic Nef polypeptides are correctly synthesised and are stable. The same is not true for Nef polypeptides targeted to the secretory pathway by virtue of a signal peptide. We therefore generated transgenic plants expressing cytosolic, full length or truncated Nef. Expression levels were variable, but in some lines they averaged 0.7% of total soluble proteins. Hexahistidine-tagged Nef was easily purified from transgenic tissue in a one-step procedure. Conclusion We have shown that transient expression can help to rapidly determine the best cellular compartment for accumulation of a recombinant protein. We have successfully expressed HIV Nef polypeptides in the cytosol of transgenic tobacco plants. The proteins can easily be purified from transgenic tissue

    A breach in plant defences: Pseudomonas syringae pv. actinidiae targets ethylene signalling to overcome Actinidia chinensis pathogen responses

    Get PDF
    8openInternationalBothEthylene interacts with other plant hormones to modulate many aspects of plant metabolism, including defence and stomata regulation. Therefore, its manipulation may allow plant pathogens to overcome the host’s immune responses. This work investigates the role of ethylene as a virulence factor for Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit. The pandemic, highly virulent biovar of this pathogen produces ethylene, whereas the biovars isolated in Japan and Korea do not. Ethylene production is modulated in planta by light/dark cycle. Exogenous ethylene application stimulates bacterial virulence, and restricts or increases host colonisation if performed before or after inoculation, respectively. The deletion of a gene, unrelated to known bacterial biosynthetic pathways and putatively encoding for an oxidoreductase, abolishes ethylene production and reduces the pathogen growth rate in planta. Ethylene production by Psa may be a recently and independently evolved virulence trait in the arms race against the host. Plant- and pathogen-derived ethylene may concur in the activation/suppression of immune responses, in the chemotaxis toward a suitable entry point, or in the endophytic colonisationopenCellini, Antonio; Donati, Irene; Farneti, Brian; Khomenko, Iuliia; Buriani, Giampaolo; Biasioli, Franco; Cristescu, Simona M.; Spinelli, Francesco;Cellini, A.; Donati, I.; Farneti, B.; Khomenko, I.; Buriani, G.; Biasioli, F.; Cristescu, S.M.; Spinelli, F

    N-Acyl Homoserine Lactones and Lux Solos Regulate Social Behaviour and Virulence of Pseudomonas syringae pv. actinidiae

    Get PDF
    The phyllosphere is a complex environment where microbes communicate through signalling molecules in a system, generally known as quorum sensing (QS). One of the most common QS systems in Gram-negative proteobacteria is based on the production of N-acyl homoserine lactones (AHLs) by a LuxI synthase and their perception by a LuxR sensor. Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit, colonises plant phyllosphere before penetrating via wounds and natural openings. Since Psa genome encodes three LuxR solos without a cognate LuxI, this bacterium may perceive diffusible signals, but it cannot produce AHLs, displaying a non-canonical QS system. The elucidation of the mechanisms underlying the perception of environmental cues in the phyllosphere by this pathogen and their influence on the onset of pathogenesis are of crucial importance for a long-lasting and sustainable management of the bacterial canker of kiwifruit. Here, we report the ability of Psa to sense its own population density and the presence of surrounding bacteria. Moreover, we show that Psa can perceive AHLs, indicating that AHL-producing neighbouring bacteria may regulate Psa virulence in the host. Our results suggest that the ecological environment is important in determining Psa fitness and pathogenic potential. This opens new perspectives in the use of more advanced biochemical and microbiological tools for the control of bacterial canker of kiwifruit

    Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. Actinidiae in absence and presence of acibenzolar-S-methyl

    Get PDF
    Background: Since 2007, bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has become a pandemic disease leading to important economic losses in every country where kiwifruit is widely cultivated. Options for controlling this disease are very limited and rely primarily on the use of bactericidal compounds, such as copper, and resistance inducers. Among the latter, the most widely studied is acibenzolar-S-methyl. To elucidate the early molecular reaction of kiwifruit plants (Actinidia chinensis var. chinensis) to Psa infection and acibenzolar-S-methyl treatment, a RNA seq analysis was performed at different phases of the infection process, from the epiphytic phase to the endophytic invasion on acibenzolar-S-methyl treated and on non-treated plants. The infection process was monitored in vivo by confocal laser scanning microscopy. Results: De novo assembly of kiwifruit transcriptome revealed a total of 39,607 transcripts, of which 3360 were differentially expressed during the infection process, primarily 3 h post inoculation. The study revealed the coordinated changes of important gene functional categories such as signaling, hormonal balance and transcriptional regulation. Among the transcription factor families, AP2/ERF, MYB, Myc, bHLH, GATA, NAC, WRKY and GRAS were found differentially expressed in response to Psa infection and acibenzolar-S-methyl treatment. Finally, in plants treated with acibenzolar-S-methyl, a number of gene functions related to plant resistance, such as PR proteins, were modulated, suggesting the set-up of a more effective defense response against the pathogen. Weighted-gene coexpression network analysis confirmed these results. Conclusions: Our work provides an in-depth description of the plant molecular reactions to Psa, it highlights the metabolic pathway related to acibenzolar-S-methyl-induced resistance and it contributes to the development of effective control strategies in open field

    High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, different HIV antigens have been successfully expressed in plants by either stable transformation or transient expression systems. Among HIV proteins, Nef is considered a promising target for the formulation of a multi-component vaccine due to its implication in the first steps of viral infection. Attempts to express Nef as a single protein product (not fused to a stabilizing protein) in transgenic plants resulted in disappointingly low yields (about 0.5% of total soluble protein). In this work we describe a transient expression system based on co-agroinfiltration of plant virus gene silencing suppressor proteins in <it>Nicotiana benthamiana</it>, followed by a two-step affinity purification protocol of plant-derived Nef.</p> <p>Results</p> <p>The effect of three gene silencing viral suppressor proteins (P25 of Potato Virus X, P19 of either Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus) on Nef transient expression yield was evaluated. The P19 protein of Artichoke Mottled Crinckle virus (AMCV-P19) gave the highest expression yield in vacuum co-agroinfiltration experiments reaching 1.3% of total soluble protein, a level almost three times higher than that previously reported in stable transgenic plants. The high yield observed in the co-agroinfiltrated plants was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs) indicating an effective modulation of RNA silencing mechanisms by AMCV-P19. Interestingly, we also showed that expression levels in top leaves of vacuum co-agroinfiltrated plants were noticeably reduced compared to bottom leaves. Moreover, purification of Nef from agroinfiltrated tissue was achieved by a two-step immobilized metal ion affinity chromatography protocol with yields of 250 ng/g of fresh tissue.</p> <p>Conclusion</p> <p>We demonstrated that expression level of HIV-1 Nef in plant can be improved using a transient expression system enhanced by the AMCV-P19 gene silencing suppressor protein. Moreover, plant-derived Nef was purified, with enhanced yield, exploiting a two-step purification protocol. These results represent a first step towards the development of a plant-derived HIV vaccine.</p

    Plant HSP70-induced multiepitope immune response

    No full text
    Summary Although a physiological role of heat-shock proteins (HSP) in antigen presentation and immune response activation has not been directly demonstrated, their use as vaccine components is under clinical trial. We have previously demonstrated that the structure of plant-derived HSP70 (pHSP70) can be superimposed to the mammalian homologue and similarly to the mammalian counterpart, pHSP70–polypeptide complexes can activate the immune system. It is here shown that pHSP70 purified from plant tissues transiently expressing the influenza virus nucleoprotein are able to induce both the activation of major histocompatibility complex class I–restricted polyclonal T-cell responses and antibody production in mice of different haplotypes without the need of adjuvant co-delivery. These results indicate that pHSP70 derived from plants producing recombinant antigens may be used to formulate multiepitope vaccines

    Role of Metcalfa pruinosa as a Vector for Pseudomonas syringae pv. actinidiae

    No full text
    After 20 years of steady increase, kiwifruit industry faced a severe arrest due to the pandemic spread of the bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa). The bacterium penetrates the host plant primarily via natural openings or wounds, and its spread is mainly mediated by atmospheric events and cultural activities. Since the role of sucking insects as vectors of bacterial pathogens is widely documented, we investigated the ability of Metcalfa pruinosa Say (1830), one of the most common kiwifruit pests, to transmit Psa to healthy plants in laboratory conditions. Psa could be isolated both from insects feeding over experimentally inoculated plants, and from insects captured in Psa-infected orchards. Furthermore, insects were able to transmit Psa from experimentally inoculated plants to healthy ones. In conclusion, the control of M. pruinosa is recommended in the framework of protection strategies against Psa

    Optimization of cultural practices to reduce the development of Pseudomonas syringae pv. actinidiae, causal agent of the bacterial canker of kiwifruit

    No full text
    BACKGROUND: The bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae (Psa), affects several cultivated Actinidia species, including A. chinensis and A. deliciosa . Its development is related to permissive environmental conditions, such as temperature, humidity, presence of entry points, genetic and physiological features of the host plant. Moreover, also cultural practices influence, directly or indirectly, the disease development. The bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae (Psa), affects several cultivated Actinidia species, including A. chinensis and A. deliciosa . Its development is related to permissive environmental conditions, such as temperature, humidity, presence of entry points, genetic and physiological features of the host plant. Moreover, also cultural practices influence, directly or indirectly, the disease development. OBJECTIVE: The role of agricultural practices on disease development and spread was studied. The role of agricultural practices on disease development and spread was studied. METHODS: Irrigation, pruning and training systems were tested in the field according to conventional orchard management. Experiments on mineral nutrition, use of bio-regulators and rootstock susceptibility were performed in controlled conditions. Bacterial growth, symptom development and disease incidence were assessed in relation to the different practices. Irrigation, pruning and training systems were tested in the field according to conventional orchard management. Experiments on mineral nutrition, use of bio-regulators and rootstock susceptibility were performed in controlled conditions. Bacterial growth, symptom development and disease incidence were assessed in relation to the different practices. RESULTS: High nitrogen fertilization, iron deficiency and water stress were related to more severe symptoms. Open canopies allow a better irradiation, aeration, and penetration of phytosanitary treatments. Synthetic gibberellins reduced disease incidence and severity in controlled conditions. Fruits from diseased plants showed a lower quality and storability. High nitrogen fertilization, iron deficiency and water stress were related to more severe symptoms. Open canopies allow a better irradiation, aeration, and penetration of phytosanitary treatments. Synthetic gibberellins reduced disease incidence and severity in controlled conditions. Fruits from diseased plants showed a lower quality and storability. CONCLUSIONS: Dense canopies are harder to manage and more exposed to bacterial canker. Pruning tools and irrigation water are relevant for the bacterial spread. Dense canopies are harder to manage and more exposed to bacterial canker. Pruning tools and irrigation water are relevant for the bacterial spread
    corecore