8,584 research outputs found

    Surface Superconductivity in Presence of Corners

    Get PDF
    We consider an extreme type-II superconducting wire with non-smooth cross section, i.e., with one or more corners at the boundary, in the framework of the Ginzburg-Landau theory. We prove the existence of an interval of values of the applied field, where superconductivity is spread uniformly along the boundary of the sample. More precisely the energy is not affected to leading order by the presence of corners and the modulus of the Ginzburg-Landau minimizer is approximately constant along the transversal direction. The critical fields delimiting this surface superconductivity regime coincide with the ones in absence of boundary singularities.Comment: 20 pages, pdfLaTex, 2 figure

    Nuclear Track Detectors for Environmental Studies and Radiation Monitoring

    Get PDF
    Several improvements were made for Nuclear Track Detectors (NTDs) used for environmental studies and for particle searches. A new method was used to determine the bulk etch rate of CR39 and Makrofol NTDs. It is based on the simultaneous measurement of the diameter and of the height of etch-pit cones caused by relativistic heavy ions (158 A GeV Pb(82+) and In(49+) ions) and their fragments. The use of alcohol in the etching solution improves the surface quality of NTDs and it raises their thresholds. The detectors were used for the determination of nuclear fragmentation cross sections of Iron and Silicon ions of 1.0 and 0.41 GeV/nucleon. These measurements are important for the determination of doses in hadron therapy and for doses received by astronauts. The detectors were also used in the search of massive particles in the cosmic radiation, for the determination of the mass spectrum of cosmic rays and for the evaluation of Po(210) alpha decay and of natural radon concentrations.Comment: 7 pages, 5 EPS figures. Presented at the 10th Topical Seminar on Innovative Particle and Radiation Detectors, 1-5 October 2006, Siena, Ital

    The Dilute Fermi Gas via Bogoliubov Theory

    Get PDF
    We study the ground state properties of interacting Fermi gases in the dilute regime, in three dimensions. We compute the ground state energy of the system, for positive interaction potentials. We recover a well-known expression for the ground state energy at second order in the particle density, which depends on the interaction potential only via its scattering length. The first proof of this result has been given by Lieb, Seiringer and Solovej (Phys Rev A 71:053605, 2005). In this paper, we give a new derivation of this formula, using a different method; it is inspired by Bogoliubov theory, and it makes use of the almost-bosonic nature of the low-energy excitations of the systems. With respect to previous work, our result applies to a more regular class of interaction potentials, but it comes with improved error estimates on the ground state energy asymptotics in the density

    Meaurement of Cosmic Ray elemental composition from the CAKE balloon experiment

    Full text link
    CAKE (Cosmic Abundances below Knee Energies) was a prototype balloon experiment for the determination of the charge spectra and of abundances of the primary cosmic-rays (CR) with Z>>10. It was a passive instrument made of layers of CR39 and Lexan nuclear track detectors; it had a geometric acceptance of \sim0.7 m2^2sr for Fe nuclei. Here, the scanning and analysis strategies, the algorithms used for the off-line filtering and for the tracking in automated mode of the primary cosmic rays are presented, together with the resulting CR charge distribution and their abundances.Comment: 5 pages, 8 figure

    Search for nuclearites with the SLIM detector

    Full text link
    We discuss the properties of cosmic ray nuclearites, from the point of view of their search with large nuclear track detector arrays exposed at different altitudes, in particular with the SLIM experiment at the Chacaltaya high altitude lab (5290 m a.s.l.). We present calculations concerning their propagation in the Earth atmosphere and discuss their possible detection with CR39 and Makrofol nuclear track detectors.Comment: 11 pages, 6 figure

    Prognostic significance of serine-phosphorylated STAT3 expression in pT1-T2 oral tongue carcinoma

    Get PDF
    Objectives. Phosphorylated (activated) STAT3 (pSTAT3) is a regulator of numerous genes that play an essential part in the onset, development and progression of cancer; it is involved in cell proliferation and preventing apoptosis, and in invasion, angiogenesis, and the evasion of immune surveillance. This study aimed mainly to investigate the potential prognostic role of pSTAT3 expression in oral tongue squamous cell carcinoma (SCC). Methods. Phospho-ser727 STAT3 immunolabeling was correlated with prognostic parameters in 34 consecutive cases of pT1\u2013T2 tongue SCCs undergoing primary surgery. Computer-based image analysis was used for the immunohistochemical reactions analysis. Results. Statistical analysis showed a difference in disease-free survival (DFS) when patients were stratified by pN status (P=0.031). Most tumors had variable degrees (mean\ub1SD, 80.7%\ub123.8%) of intense nuclear immunoreaction to pSTAT3. Our findings rule out any significant association of serine-phosphorylated nuclear STAT3 expression with tumor stage, grade, lymph node metastasis, recurrence rate, or DFS. Conclusion. In spite of these results, it is worth further investigating the role of pSTAT3 (serine-and tyrosine-pSTAT3) in oral tongue SCC in larger series because preclinical models are increasingly showing that several anticancer strategies would benefit from STAT3 phosphorylation inhibition

    Bulk Etch Rate Measurements and Calibrations of Plastic Nuclear Track Detectors

    Get PDF
    New calibrations of CR39 and Makrofol nuclear track detectors have been obtained using 158 A GeV Pb (82+) and In (49+) ions; a new method for the bulk etch rate determination, using both cone height and base diameter measurements was developed. The CR39 charge resolution based on the etch-pit base area measurement is adequate to identify nuclear fragments in the interval 7 <= Z/beta <= 49. For CR39 the detection threshold is at REL~50 MeV cm^2/g, corresponding to a nuclear fragment with Z/beta~7. Base cone area distributions for Makrofol foils exposed to Pb (82+) ions have shown for the first time all peaks due to nuclear fragments with Z > 50; the distribution of the etched cone heights shows well separated individual peaks for Z/beta = 78 - 83 (charge pickup). The Makrofol detection threshold is at REL 2700 MeV cm^2/g, corresponding to a nuclear fragment with Z/beta~50.Comment: 11 pages, 5 EPS figures. Submitted to Nucl. Instr. Meth.

    Fragmentation studies of high energy ions using CR39 nuclear track detectors

    Get PDF
    We report on the measurements of the total charge changing fragmentation cross sections in high-energy nucleus-nucleus collisions using Fe, Si and Pb incident ions. Several stacks of CR39 nuclear track detectors with different target combinations were exposed at normal incidence to high energy accelerator beams to integrated densities of about 2000 ions/cm^2. The nuclear track detector foils were chemically etched, and ion tracks were measured using an automatic image analyzer system. The cross section determination is based on the charge identification of beam ions and their fragments and on the reconstruction of their path through the stacks.Comment: 5 pages, 4 EPS figures. Corrected Eq. 3 and Table 1. Presented at the 10th Inter. Symp. Radiat. Phys., Coimbra, Portugal, 17-22 Sept. 200

    The COVID-19 outbreak in dermatologic surgery: resetting clinical priorities

    Get PDF
    Emilia-Romagna was one of the Italian regions mostly affected by the COVID-19 pandemic and lockdown measures were taken to slow the COVID-19 outbreak. All routine activities in Modena hospitals were suspended; however, urgent procedures were still to be performed. Setting the priority of procedures in oncological dermatology in the COVID-19 era is challenging
    corecore