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Highlights 

 Superior reliability of FAEEs over indirect biomarkers was demonstrated once more; 

 Chemometrics turns effective for the identification of chronic alcohol drinkers; 

 PLS-DA combined the predictive capabilities of both EtG and FAEEs parameters; 

 This model yielded a classification decision based on probabilistic foundation; 

 PLS-DA overcomes most of the drawbacks related to the use of single cut-off values. 

 

Abstract 

The chronic intake of an excessive amount of alcohol is currently ascertained by determining the 

concentration of direct alcohol metabolites in the hair samples of the alleged abusers, including 

ethyl glucuronide (EtG) and, less frequently, fatty acid ethyl esters (FAEEs). Indirect blood biomarkers 

of alcohol abuse are still determined to support hair EtG results and diagnose a consequent liver 

impairment. In the present study, the supporting role of hair FAEEs is compared with indirect blood 

biomarkers with respect to the contexts in which hair EtG interpretation is uncertain. Receiver 

Operating Characteristics (ROC) curves and multivariate Principal Component Analysis (PCA) 

demonstrated much stronger correlation of EtG results with FAEEs than with any single indirect 

biomarker or their combinations. Partial Least Squares Discriminant Analysis (PLS-DA) models based 

on hair EtG and FAEEs were developed to maximize the biomarkers information content on a 

multivariate background. The final PLS-DA model yielded 100% correct classification on a 

training/evaluation dataset of 155 subjects, including both chronic alcohol abusers and social 

drinkers. Then, the PLS-DA model was validated on an external dataset of 81 individual providing 

optimal discrimination ability between chronic alcohol abusers and social drinkers, in terms of 

specificity and sensitivity. The PLS-DA scores obtained for each subject, with respect to the PLS-DA 

model threshold that separates the probabilistic distributions for the two classes, furnished a 

likelihood ratio value, which in turn conveys the strength of the experimental data support to the 

classification decision, within a Bayesian logic. Typical boundary real cases from daily work are 

discussed, too. 
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Introduction 

The abuse of alcohol has an impact on different aspects of the consumers' life and generates multiple 

physical and psychological damages together with an increased rate of road and work accidents. For 

these reasons, it is necessary to adopt appropriate procedures for the recognition of individuals with 

alcohol-related problems, and also to monitor them during recovery programs. The current 

toxicology state of the art identifies a person who falls into the category of excessive alcohol 

consumer through the analysis of direct biomarkers in hair, i.e. ethyl glucuronide (EtG) and fatty acid 

ethyl esters (FAEEs) [1–9]. Although traditional indirect biomarkers (i.e., not formed by alcohol 

metabolic processes), including aspartate transferase (AST), alanine transferase (ALT), gamma-

glutamyl transferase (GGT), mean corpuscular volume of the erythrocytes (MCV) and carbohydrate-

deficient-transferrin (CDT) on blood/serum are still utilized to evaluate chronic excessive alcohol 

intake [5,10–12], they rather reveal the damaging effects of alcohol on target organs, but exhibit 

unsatisfactory sensitivity and specificity [11,13]. In fact, indirect effects largely depend on the inter-

individual variability, resulting in a high rate of false positive and false negative outcomes. 

Among direct biomarkers, the EtG concentration in 3-6 cm hair samples is currently used as the 

reference parameter for the assessment of both chronic alcohol abuse (cut-off 30 pg/mg) and 

abstinence (cut-off 7 pg/mg), because of its excellent diagnostic sensitivity and specificity [11,14–

20]. Alongside EtG, the determination of FAEEs in hair has been largely investigated in recent years 

in order to support the interpretation process by adding a second trustworthy biomarker useful in 

doubtful situations [5,8,9,21–24]. FAEEs are a group of more than twenty compounds, formed by 
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non-oxidative metabolic esterification of fatty acids as a result of ethanol consumption [25]. 

Traditionally, the four most abundant FAEEs are quantified, namely ethyl myristate (E14:0), ethyl 

palmitate (E16:0), ethyl oleate (E18:0), ethyl stearate(E18:1) [25]. More recently, the sole ethyl 

palmitate (E16:0) has been proposed for interpretation instead of the sum of the four FAEEs [26,27]. 

New cut-off values for E16:0 have been established by SoHT, namely 0.35 ng/mg for 0-3 cm proximal 

hair segment and 0.45 ng/mg for 0-6 cm proximal hair segment [26]. 

FAEEs and EtG absorption in hair is potentially influenced by several factors [28] including cosmetic 

treatments [29,30], seasonality [31], hair crumbling method and extraction pre-treatment 

procedures [32,33] among others. Consequently, the correlation observed between alcohol 

consumption and biomarkers’ concentrations is not exact and partly depends also on their 

hydrophilic (EtG) or lipophilic (FAEEs) nature. Other sources of bias are the use of alcohol-based hair 

care products [34] and lipophilic hair waxes [13], respectively leading to FAEEs increase or decrease. 

False positive EtG findings had been sporadically associated with the application of EtG-containing 

hair care products [35]. Beside specific sources of bias, the intrinsic data variability makes sometimes 

the interpretation of ethanol biomarkers challenging, especially when the measured EtG and FAEEs 

values are close to their cut-off values or provide contradictory results. This drawback is labelled as 

“fall-off-cliff” problem and it is strictly embedded with the use of cut-off values [36]. It refers to the 

fact that small variations of the detected concentration around the cut-off value may reverse the 

final decision. For these reasons, combining the results from FAEEs and EtG analysis represents a 

valuable approach to decrease the number of misleading conclusions [21–23,37–39]. 

In previous studies, we proposed to use multivariate data analysis for the detection of chronic 

alcohol abuse [11,40–41], where the supporting role of indirect biomarkers initially chosen to 

strengthen hair EtG results was subsequently taken by FAEEs. In the present study, the relative 

synergistic contributions of FAEEs and indirect biomarkers was preliminarily evaluated on a large 

dataset using Receiver Operating Characteristic (ROC) curves and Principal Components Analysis 
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(PCA). Then, Partial Least Squares - Discriminant Analysis (PLS-DA) was selected as the most effective 

statistical tool [43–45] to objectively identify chronic alcohol abuser on a multivariate basis. A PLS-

DA model based on concordant hair EtG and FAEEs was developed and then validated on a large 

range of real caseworks. The coordinates obtained from each subject under investigation within the 

PLS-DA model provided the ideal score to ascertain the occurrence of chronic alcohol abuse, by 

means of a Bayesian approach, where the calculated likelihood ratio defines the probability and 

support strength for the chronic vs. non-chronic classification [41]. The apparent limitation of the 

present study, namely the modelling dataset was necessarily built from real casework results, not 

from subjects consuming controlled (both moderate and excessive) amounts of alcohol due to 

obvious ethical reasons, is overcome by the proven usefulness of the classification model in a group 

of 81 clinically-classified patients. 

 

Materials and methods 

Reagents and reference substances  

Ethyl myristate (E14:0), ethyl palmitate (E16:0), ethyl oleate (E18:1), ethyl stearate (E18:0), n-

heptane and dimethyl sulfoxide (DMSO) were obtained from Sigma-Aldrich (Milan, Italy). The 

deuterated standards D5-ethyl myristate, D5-ethyl palmitate, D5-ethyl oleate, D5-ethyl stearate were 

provided by Toronto Research Chemicals (TRC). Stock solutions of FAEEs, as well as the deuterated 

analogues, were prepared in n-heptane (1 mg/mL). A working solution containing all four D5-FAEE 

at concentration of 1 μg/mL was prepared by dilution and used as internal standard (ISTD). A 

solution containing the non-deuterated FAEEs at concentration of 1 μg/mL for E14:0 and E18:0 and 

4 μg/mL for E16:0 and E18:1 was also prepared. All solutions were stored in a refrigerator at -20°C. 

 

Sample preparation 
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The preparation of hair samples for FAEEs detection was performed in analogy to Pragst et al. [6], 

Suesse et al.[9] and Albermann et al.[46]. The proximal segment 0-3 cm was analyzed for each 

sample and 50 mg of hair was washed twice with n-heptane (3 mL, vortex mixing for 5 min). After 

the removal of the washing solvent, the hair aliquot was dried at room temperature overnight and 

then cut into 1-2 mm segments. The resulting hair samples were fortified with 30 μL ISTD, to yield a 

final D5-FAEEs concentration of 0.6 ng/mg, followed by the addition of 2 mL n-heptane and 0.5 mL 

DMSO. Then, the samples were shaken in a multimixer for 16 hours at room temperature. 

Afterwards, they were cooled at -20°C (freezing of DMSO) for 30 mins and the organic phase was 

transferred into a 20 mL headspace vial, dried at 70°C by nitrogen stream and reconstituted with 1 

mL of phosphate buffer. Then, the vials were closed with magnetic caps and placed into the vial rack 

of the MultiPurpose Sampler Flex. 

Hair EtG analysis was executed and validated as reported previously [31]. The determination of 

indirect biomarkers was performed as described elsewhere [41]. 

 

Instrumentation 

Headspace-Solid Phase Micro Extraction (HS-SPME) experiments were performed using a 

MultiPurpose Sampler Flex A05-FLX-0001 (Est Analytical, West Chester Township, OH, USA) 

equipped with a 65 μm StableflexTM polydimethylsiloxane/divinylbenzene fiber (PDMS/DVB) from 

Supelco (Sigma-Aldrich, Milan, Italy). For HS-SPME, the following conditions were used: fiber 

conditioning 10 mins at 250°C; preheating 5 mins at 90°C and 250 rpm agitation; headspace 

adsorption 30 mins at 90°C; desorption in the GC injection port 1 min at 250°C. The injector was set 

in splitless mode. GC/MS determinations were performed using a 6890N GC (Agilent Technologies, 

Milan, Italy) equipped with a 50 m fused-silica capillary column (J&W Scientific DB 5-MS), i.d. of 0.25 

mm and film thickness of 0.25 µm, used for GC separation. Helium was employed as the carrier gas 

at a constant pressure of 20.16 psi. The GC oven temperature was set at 140°C for 1 min and then 
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raised to 265°C with a 25°C/min heating rate and further to 300°C with a 15°C/min heating rate. The 

total run time was 10 min. The GC injector was maintained at 250°C while the transfer-line, the ion 

source and the quadrupole were maintained at 280°C, 230°C and 150°C, respectively. The 

chromatograph was coupled to a 5975-inert MSD from Agilent Technologies (Milan, Italy) with EI at 

70 eV. FAEEs and their deuterated analogues were detected by operating the mass spectrometer in 

Selected Ion Monitoring acquisition. The fragment ions monitored were 93, 162, 218, 261/88, 101, 

157, 256 (D5-ethyl myristate/ethyl myristate); 93, 106, 162, 246/88, 101, 157, 241 (D5-ethyl 

palmitate/ethyl palmitate); 93, 106, 315/88, 101, 310 (D5-ethyl oleate/ethyl oleate); and 93, 106, 

274, 317/88, 101, 269, 312 (D5-ethyl stearate/ethyl stearate). The ions used for the quantitation are 

marked in bold. 

 

Validation 

The procedure was validated in accordance with ISO/IEC 17025:2005 requirements. According to 

the expected ratio of the four esters in real samples [9], 6-point calibration curves were built at the 

concentrations of 0.04, 0.08, 0.12, 0.24, 0.36, 0.60 ng/mg for E14:0 and E18:0 and 0.16, 0.32, 0.48, 

0.96, 1.44, 2.40 ng/mg for E16:0 and E18:1 The calibration curves proved linear over the whole range 

for all monitored biomarkers. Several tests were performed to verify the features of the calibration 

curves calculated with least-squares linear regression, according to Raposo [47]. ANOVA, lack-of-fit, 

back-calculation and Mandel’s tests showed satisfactory results in terms of linearity and 

homoscedasticity in the calibration ranges considered. Limits of detection (LOD) and quantification 

(LOQ) values reported in Table 1 were determined with the Hubaux-Vos’ method [48], and were 

successfully verified with experiments. Selectivity, specificity, precision and accuracy, intra- and 

inter-day reproducibility, carryover and thickness parameters resulted eligible in the ranges of 

validation too. 
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Cohort description 

236 individuals (225 males and 11 females) were investigated in this study. Their toxicological 

analyses were commissioned by Local Committees for Driving Licences and Alcohol Abuse Treatment 

Services (SerD) located in Piedmont (northern Italy). For 155 individuals (148 males and 7 females) 

the following parameters were collected: AST (μg/L), ALT (μg/L), GGT (μg/L), MCV (fl) and CDT (%), 

EtG (pg/mg), E14:0 (ng/mg), E16:0 (ng/mg), E18:1 (ng/mg), E18:0 (ng/mg) and ∑FAEEs (i.e. sum of 

E14:0, E16:0, E18:1 and E18:0 - ng/mg). On the remaining 81 individuals (77 males, 4 females) only 

the direct biomarkers were measured. The latter cohort was used as a models verification set. The 

study was accepted and granted by the Ethical Committee of the Azienda Ospedaliero-Universitaria 

San Luigi Gonzaga of Orbassano (Protocol Number 0012756). 

 

Univariate and Multivariate Data Analysis 

A 15511 data matrix (Supplementary Material) was prepared to perform descriptive statistics, 

correlation studies and Receiver Operating Characteristics (ROC) curves by means of R software 

version 3.2.4 (pROC package was employed for this purpose) [49,50]. A few missing data (i.e. 

concentration levels lower than LOD values) were substituted with a value equal to one half of their 

corresponding LOD concentrations reported in Table 1. All the data were log-transformed to make 

their distribution closer to normality (according to quantile-quantile (QQ) plots and violin plots, 

before and after the log-transformation). PCA was applied after data autoscaling. Hotelling T2 vs. Q 

Residuals plots were evaluated to identify and remove the outliers, i.e. samples that exhibited rare 

features [51] or anomalous concentration levels [52] with respect to the reference population. 

For the development of PLS-DA models, the first-set of 155 individuals was prearranged into two 

categories of chronic and non-chronic alcohol drinkers on the basis of the coherence of EtG and 

E16:0 values with respect to the SoHT cut-offs [27]: chronic alcohol drinkers – i.e., “positive” – 

exhibited coherent values of EtG ≥ 30 pg/mg and E16:0 ≥ 0.35 ng/mg (29 subjects), while non-
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chronic alcohol drinkers –i.e.,  “negative” – had coherent values of EtG < 30 pg/mg and E16:0 < 0.35 

ng/mg (101 subjects); 25 individuals out of 155 exhibited uncoherent EtG and E16:0 results with 

respect to the cut-off values, yielding a third category of “unlabelled” subjects. The data relative to 

the 130 classified individuals were arranged into multiple training sets (randomly composed by 104 

subjects, i.e. 80% of 130) and evaluation sets (“outer loop”, composed by the remaining 26 subjects, 

i.e. 20% of 130) in order to perform a repeated double cross-validation procedure [53,55]. In turn, 

the training set was split into calibration and internal validation samples (“inner loop”) by applying 

the cross-validation venetian blinds design to a number of data splits equal to 5. PLS-DA models 

[44,56,57] were developed on EtG and FAEEs values, using both single FAEEs and their sum. The 

coherence of biomarkers output was considered a reasonable criterion to assemble the training sets 

on which a robust classification model for chronic alcohol drinkers recognition could be built. The 

final PLS-DA model was subsequently tested on the external 81 subjects dataset which was split into 

two sub-sets of 49 and 32 individuals, respectively. The first group of 49 individuals (labelled “Test”) 

were provisionally classified according to their self-declaration of alcohol consumption. The 

remaining 32 individuals were provisionally classified according to the physicians of the Alcohol 

Abuse Treatment Services (SerD) collaborating to this study (labelled “SerD”). The physicians’ 

judgement was based on the clinical history traced during the admission medical examination of 

patients and their indirect biomarkers of ethanol consumption, whenever available. 

Multivariate models were carried out on MATLAB software version 7.13.0 with PLS_Toolbox version 

8.2.1 [56] and the Classification Toolbox for MATLAB from Milan Chemometrics and QSAR Research 

Group [44]. Repeated double cross-validation strategies were performed with the help of R 

chemometrics package [55]. 

 

Results and discussion 

Univariate and Multivariate Exploratory Data Analysis 
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The simplest approach used to assess chronic excessive alcohol consumption is to determine hair 

EtG alone, and compare the measured level with the 30 pg/mg EtG cut-off value established by SoHT 

[27]. Following this criterion, 36 out of 155 individuals (23%) initially considered could be labelled as 

chronic alcohol abusers, while 119 out of 155 subjects (77%) were included in a single category 

comprising teetotallers and social drinkers, according to the EtG cut-off value. In order to verify how 

the results of other biomarkers compare with EtG data, ROC curves (Figure 1) were built for various 

indirect (i.e. ALT, AST, CDT, GGT, MCV) and direct (i.e. E14:0, E16:0, E18:1, E18:0 and FAEEs) 

biomarkers of ethanol consumption, using EtG results as the “true” classification rule. Figure 1 shows 

that direct biomarkers compare significantly better with EtG results than any one of the indirect 

biomarkers. In particular, E16:0 biomarker provided the highest value of Area Under the Curve (AUC) 

equal to 0.92, thus corroborating the recent update of SoHT consensus document [27], that asserts 

the reliability of E16:0 as a biomarker for the discrimination of non-chronic from chronic excessive 

alcohol drinkers. 

Keeping the same simplified classification rule based on EtG cut-off, a principal component analysis 

(PCA) was conducted to verify how much information was added by considering various 

combinations of other biomarkers within a multivariate strategy. The first PCA model was calculated 

considering all the biomarkers simultaneously (Figure 2a-b), with the obvious exclusion of EtG; a 

cumulative variance (CV) of 87.72% was explained with four principal components (PCs). A rough 

distinction between chronic (red diamonds) and non-chronic (blue circles) individuals was observed 

along PC1 direction, as is evident in the PC1 vs. PC2 scores plot (68.31% CV) reported in Figure 2a. 

The loadings plot (Figure 2b) confirms that the highest contribution to PC1 is provided by FAEEs 

(both singularly considered and summed), followed by CDT, while the other indirect biomarkers 

contribute to the explained CV mainly along the PC2 direction, that provides no distinction between 

the two categories of individuals. 

The second PCA model (Figure 2c-d) was built only on the indirect biomarkers; a CV of 72.18% was 
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obtained from three PCs. The scores plot reported in Figure 2c, shows no distinction between the 

two categories of subjects, with chronic and non-chronic data points completely mixed up. The third 

PCA model (Figure 2e-f) was calculated on FAEEs only, yielding 95.34% CV from the first two PCs. 

Due to the high correlation among FAEEs, the PC1 explains more than 90% variance and provides 

the direction along which discrimination between chronic from non-chronic drinkers can be 

established. As anticipated from the ROC curves, the four FAEEs had similar loading values (Figure 

2f) for PC1 and their limited variance is expressed in the PC2 exclusively. From the three PCA models, 

it can be concluded that effective support to EtG data in doubtful, uncertain, and biased situations 

is provided only by the determination of hair FAEEs, not by indirect biomarkers whose practical 

worth is restricted to the evaluation of health conditions of the examined subjects. 

The PCA model represented in Figure 2e, shows that low PC1 values (corresponding to low FAEEs 

concentrations) are exclusively associated with non-chronic drinkers, but high PC1 values may 

correspond to both chronic and non-chronic drinkers, confirming that FAEEs determination has high 

sensitivity but limited specificity. To obtain a better representation for the 155 individuals of the 

training set, E16:0 and EtG results were plotted in a bivariate Cartesian diagram (E16:0 on the 

abscissa, EtG on the ordinate (Figure 3). Using both biomarkers for the evaluation of chronic 

excessive alcohol drinking instead of only EtG, most individuals were clearly classified either as non-

chronic alcohol drinkers in Figure 3 (blue circles) – 101 out of 155 (65%) with coherent values of EtG 

< 30 pg/mg and E16:0 < 0.35 ng/mg – or chronic alcohol drinkers (red diamonds) – 29 out of 155 

subjects (19%) with coherent values of EtG ≥ 30 pg/mg and E16:0 ≥ 0.35 ng/mg –. As a consequence, 

this bivariate approach classified 130 over 155 individuals (84%) with concordant biomarkers results, 

while 25 individuals (16%) showed contradictory EtG and E16:0 results with respect to their 

respective cut-off values and were marked as “unlabelled” in Figure 3 (grey triangles). In detail, 7 

subjects showed EtG ≥ 30 pg/mg, but E16:0 < 0.35 ng/mg, while 18 subjects presented EtG values 

lower than the cut-off limit of 30 pg/mg, but E16:0 concentrations higher than 0.35 ng/mg. 
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The use of concordant EtG and E16:0 results as a criteria to classify the subjects that compose the 

modelling dataset represents an arguable choice, somehow necessary due to the fact the ideal 

setting (i.e., controlled administration of alcohol) is prevented by ethical reasons, as long as the 

condition of excessive consumption has to be included. 

 

Partial Least Squares-Discriminant Analysis 

A linear discriminant analysis (LDA) approach was initially tested to classify the subjects on a 

multivariate basis. However, the developed models proved not to be sufficiently robust, due to the 

strong correlation existing among the direct biomarkers. Therefore, the PLS-DA technique was 

applied to develop more robust models for the identification of chronic alcohol drinkers with respect 

to the single marker approach currently used in most situations. The combinations of EtG with four 

FAEEs and their sum were considered for this purpose. The subjects forming the training and the 

evaluation matrixes were categorised as non-chronic (101), chronic (29) and unlabelled (25), in 

agreement with the definition provided above. The 130×6 dataset of “classified” individuals was 

used to develop a PLS-DA model, which was cross-validated using several randomly-built 104×6 

training sets and 26×6 internal evaluation sets, consisting of 20 negative and 6 positive individuals 

(see Materials and Methods). The first two latent variables (LV) of the PLS-DA model described a CV 

of 92.01%. The corresponding scores plot (Figure 4a) showed complete discrimination between 

chronic and non-chronic alcohol drinkers, as is evidenced by the PLS-DA threshold (red dashed line) 

which separates the two classes. Thus, optimal results in terms of sensitivity (100%) and specificity 

(100%), on both cross-validated training (red diamonds and blue circles, in Figure 4a) and evaluation 

(yellow 4-point and green 5-point stars, in Figure 4a) datasets were obtained. 

The new PLS-DA model based on EtG and FAEEs was tested on the group of the 25 individuals with 

contrasting EtG and E16:0 outcomes and defined as “unlabelled” in the bivariate approach. The 

biomarkers concentration levels and PLS-DA responses for these subjects are reported in Table 2. 
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According to the PLS-DA threshold reported in Figure 4a, 10 out of 25 unknown subjects (40%) were 

identified as chronic excessive alcohol drinkers, while the remaining 15 individuals (60%) were 

classified as non-chronic drinkers (the scores of the individuals defined as “unlabelled” are denoted 

by grey stars in Figure 4b). In particular, all seven subjects (19-25) with EtG results exceeding the 30 

pg/mg cut-off were classified as chronic excessive drinkers by the model, in agreement with the fact 

that their FAEEs concentrations were relatively high (sum of FAEEs range: 0.46-0.92 ng/mg; E16:0 

range: 0.20-0.27 ng/mg). For the remaining three subjects classified as chronic excessive drinkers, 

E16:0 levels exceeding the cut-off value were recorded along with relatively high EtG concentrations 

(EtG range: 22-26 pg/mg). On the other side, the 15 subjects classified as non-chronic by the PLS-DA 

model showed high E16:0 results in conjunction with EtG values far from the 30 pg/mg cut-off. As 

an example, subject 14 had a E16:0 concentration equal to 2.15 ng/mg, but only 6 pg/mg for EtG. 

Although the proposed PLS-DA model indicates the most probable classification for each of these 

individuals, this model still suffers somehow from the “fall-off-cliff” problem - typical of univariate 

approaches - that we described in a previous study and was overcome by introducing a likelihood-

ratio Bayesian method to alcohol biomarkers evaluation [41]. For example, individuals 13 and 17 

exhibited similar EtG, E16:0, and FAEEs concentrations (all of them are slightly higher for subject 17, 

see Table 2), but were classified in opposing ways because they are close to the PLS-DA threshold on 

opposite sides. Further caution should be addressed also to subjects 12 and 15, whose EtG level is 

18 pg/mg, significantly below the cut-off, but in conjunction with extremely high FAEEs levels. For 

all these situations, the present PLS-DA model can be used to provide the optimal probabilistic 

background on which the cited likelihood ratio method is built, which in turn is used to express the 

support to the chronic vs. non-chronic classification with an appropriate scale (inconclusive, weak, 

moderate, moderately strong, strong, very strong support) [41]. Accordingly, a likelihood ratio (LR) 

model was built on the PLS-DA scores of the subjects of the training set (showed in Figure 4a), in 

agreement with our previous work [41]. LR values and their relative verbal translation describing the 
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strength of the support associated with the classification prediction are reported in the last two 

columns of Table 2. Following LR values, the aforementioned individuals 13 and 17 are no more 

classified in opposing ways, since a weak support to the non-chronic hypothesis (LR = 8.55E+01) is 

expressed for subject 13, whereas an inconclusive result (LR = 1.15E-01) is obtained for subject 17. 

This LR approach intrinsically takes into account the variability of biomarkers values associated with 

potential influencing factors and helps the forensic expert during the decision process, by providing 

him a confidence level for the conclusion drawn from the PLS-DA model. With reference to the 

subjects 12 and 15 cited above, whose LR values turned to be equal to 1.62E+02 and 3.26E+03, 

respectively. In the present case, LR values suggested moderate (subject 12) and moderately strong 

(subject 15) supports to the “non-chronic” hypotheses, in accordance with the PLS-DA model. 

 

Real caseworks 

The PLS-DA model was tested on 81 subjects from real caseworks, among which 49 subjects provided 

a self-declaration of their drinking habits (1-49, group defined as “Test”). The remaining 32 

individuals (50-81, group defined as “SerD”) were tentatively classified by the physicians of Alcohol 

Abuse Treatment Services (SerD), according to their clinical history, whose records ranged from a 

single visit to years-long care-taking. The biomarkers concentrations for the examined individuals of 

the “Test” group, their self-declared classification, the prediction of the PLS-DA model, the LR values, 

and their verbal conversion are reported in Table 3a. Figure 5a shows the PLS-DA model scores plot 

in which the data-points for these subjects were inserted, respectively as green stars (i.e. self-

declared non-chronic drinkers) and yellow stars (i.e. self-declared chronic excessive drinkers). 

Complete agreement between the self-declared classification (42 non-chronic, 7 chronic) and PLS-

DA model prediction was observed. 

The PLS-DA model was subsequently tested on the 32 individuals of the “SerD” group. The 
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corresponding biomarkers results, the classification suggested by the physicians and the prediction 

of the PLS-DA model are reported in Table 3b, together with the corresponding LR results. In this 

group, 19 out of 32 subjects were a-priori classified as non-chronic drinkers by SerD physicians 

(green stars in Figure 5b), while 13 were defined as chronic excessive alcohol drinkers (yellow stars 

in Figure 5b). The PLS-DA model confirmed the provisional classification for 24 subjects only (50-73) 

whereas the alternative classification was suggested by the PLS-DA model for 8 subjects (74-81) with 

respect to the SerD proposal. Among the latters, the PLS-DA model indicates subjects 74-80 as 

alleged chronic excessive drinkers. As a matter of fact, relatively high EtG, E16:0, and FAEEs levels 

were recorded for all of them, even if E16:0 and FAEEs concentrations were below the cut-off values 

for subjects 78 and 79. Indeed, the clinical history for all subjects 74-80 proved to be extremely 

limited, as all of them had been previously visited only once, and the physicians preliminarily 

classified them just after they took on responsibility of these patients. An opposite situation is 

represented by individual 81, who was a long-term patient of SerD: the physicians still classified him 

as a chronic excessive drinker due to the fact that relatively high values for his blood biomarkers 

were recorded, especially CDT and GGT, despite the subject declared that he considerably reduced 

his drinking habits in the last 40 days, till complete abstinence. Direct alcohol biomarkers (e.g. 19 

pg/mg for EtG and 0.073 ng/mg for E16:0) and the PLS-DA model strongly supported the patient’s 

statement, reversing the SerD judgement, as suggested by the LR model too. 

In conclusion, the adoption of our PLS-DA model based on hair analysis of direct chronic alcohol 

consumption biomarkers (EtG and FAEEs) proved to represent a valuable tool to assist the SerD 

physicians during their clinical evaluation process. This validated approach, combined with the 

Bayesian method recently described [41,42], represents a further development our previous 

research activity [1,11,40] that underlined the need of introducing a multivariate interpretation of 

the available alcohol consumption biomarkers data in order to obtain a clearer characterization 

chronic excessive alcohol drinkers and their drinking habits, for clinical purposes. 
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Conclusions 

In a large analytical toxicology laboratory, hundreds of hair samples are processed each week to 

identify, by means of EtG analysis, the possible subsistence of chronic excessive alcohol intake 

conditions in subjects involved in workplace testing, driving license granting, and rehabilitation 

programs. Although hair EtG determination is generally granted with about 98% sensitivity and 

selectivity using the prescribed cut-off value, it turns out that 3-4% of samples risks to be incorrectly 

classified (several units each week), most of which have EtG values close to the cut-off. In dubious, 

uncertain, and borderline situations the determination of further alcohol biomarkers is 

recommended, in particular hair FAEEs (or the single E16:0) [26], although several laboratories still 

prefer indirect blood biomarkers. In the current study, the superior reliability of FAEEs with respect 

to indirect biomarkers to support EtG data has been demonstrated once more. However, the 

frequent occurrence of conflicting compliance of EtG and FAEEs results opens the data interpretation 

question, that can be rationally approached only on the ground of statistical reasoning. 

Multivariate data analysis clearly represents the most effective approach for the identification of 

chronic excessive alcohol drinkers. In particular, the multivariate PLS-DA model proposed in the 

present study proved to combine the predictive capabilities of both EtG and FAEEs parameters with 

optimal relative weighting, yielding a classification decision based on probabilistic foundation, which 

in turn relies on the multivariate space organized from a selected reference populations of chronic 

and non-chronic alcohol drinkers. The borderline cases taken from the real daily workflow 

considered in this study confirm the effectiveness of the present classification strategy. 

Although the adoption of such a PLS-DA model overcomes most of the drawbacks related to the use 

of single cut-off values. It still requires further data elaboration to express its probabilistic 

significance on a graduate scale. This objective was easily achieved by introducing the PLS-DA scores 

ACCEPTED M
ANUSCRIP

T



17 
 

obtained from each subject under study within the probabilistic distributions for the two modelling 

classes, yielding a likelihood ratio value, which expresses –numerically and verbally - the strength of 

the support to the classification decision, within a Bayesian logic [41]. 
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Figure 1. ROC curves for direct (i.e. E14:0, E16:0, E18:1, E18:0 and FAEEs, continuous lines) and indirect (i.e. 

ALT, AST, CDT, GGT and MCV, dashed lines) biomarkers of ethanol consumption, with respect to SoHT EtG cut-

off value equal to 30 pg/mg, used as the classification criterium. 
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Figure 2. PCA scores plots (a, c, e) and loading plots (b, d, f) using different biomarkers as variables. The 

subjects are classified with reference to SoHT cut-off value of EtG (30 pg/mg). (a, b) PCA scores and loadings 

graphs obtained from indirect biomarkers and FAEEs; (c, d) PCA scores and loadings graphs obtained from 

indirect biomarkers only; (e, f) PCA scores and loadings graphs obtained from FAEEs only. Chronic excessive 
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alcohol drinkers are represented by red diamonds, while social drinkers are indicated by blue circles. 

 

 

Figure 3. E16:0 vs EtG plot representing the bivariate classification criteria defined by SoHT cut-off values [26]. 

Chronic excessive alcohol drinkers are represented by red diamonds, while social drinkers are indicated by 

blue circles. Grey triangles represent the individuals (i.e. “unlabelled” category) whose EtG and E16:0 results 

yielded incoherent classification with respect to their cut-off values [26]. 
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Figure 4. PLS-DA scores plots built with the use of all the direct biomarkers on (a) the training (104×6) and 

the internal evaluation (26×6) sets, and (b) the 25 individuals providing EtG and E16:0 values uncoherent to 

SoHT cut-offs (named “unlabelled”), represented by grey stars. Chronic excessive alcohol drinkers are 

represented by red diamonds (training set) and yellow 4-point stars (evaluation set), while non-chronic 

drinkers are indicated by blue circles (training set) and green 5-point stars (evaluation set). The red dashed 

line represents the PLS-DA delimiter.  

 

 

 

 

 

 

 

 

 

 

ACCEPTED M
ANUSCRIP

T



25 
 

 

 

Figure 5. PLS-DA scores plots relative to the predictions of the tested datasets consisting of the real caseworks’ 

subjects (a) that were a-priori classified according to their self-declared drinking habits (named “Test” group), 

and the ones (b) that were classified by physicians according to their clinical history (named “SerD” group). 

Non-chronic alcohol drinkers are represented by blue circles (training set) and green 5-point stars (Test/SerD 

groups), while chronic alcohol drinkers are indicated by red diamonds (training set) and yellow 4-point stars 

(Test/SerD groups). The red dashed line represents the PLS-DA delimiter.  
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Table 1. Validation data of the determination of FAEEs by HS-SPME-GC/MS-SIM. 

Fatty Acid Ethyl Esthers 

(FAEE) 

LOD  

(ng/mg) 

LOQ  

(ng/mg) 

E14:0 0.003 0.005 

E16:0 0.008 0.016 

E18:1 0.017 0.033 

E18:0 0.002 0.004 
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Table 2. E14:0, E16:0, E18:1, E18:0, FAEEs and EtG concentration levels relative to the selected subjects 

defined as “unlabelled” according to the bivariate model considering EtG and E16:0 cut-offs only. EtG and 

E16:0 values higher than the cut-offs established by SoHT (30 pg/mg and 0.35 ng/mg, respectively) are 

reported in bold. PLS-DA classification, likelihood ratio values, and their relative verbal translation are 

reported [41]. Support strength: INC = Incoherent; W = weak; M = moderate; MS = moderately strong; S = 

strong; VS = very strong. 

 

“Unlabelled” individuals (Evaluation set) 

ID 
E14:0 
(ng/mg) 

E16:0 
(ng/mg) 

E18:1 
(ng/mg) 

E18:0 
(ng/mg) 

FAEEs 
(ng/mg) 

EtG 
(pg/mg) 

PLS-DA 
Classification 

Likelihood 
Ratio 

Strength 
of the 
support 

1 0.065 0.352 0.240 0.065 0.721 13 Non-Chronic 8.17E+02 M 

2 0.093 0.363 0.201 0.064 0.720 14 Non-Chronic 6.26E+02 M 

3 0.110 0.369 0.144 0.106 0.729 2 Non-Chronic 2.05E+07 VS 

4 0.167 0.748 0.239 0.093 1.246 12 Non-Chronic 1.34E+02 M 

5 0.092 0.559 0.231 0.079 0.962 13 Non-Chronic 5.58E+01 W 

6 0.103 0.546 0.119 0.739 1.506 14 Non-Chronic 7.14E+04 S 

7 0.259 1.068 0.471 0.284 2.082 4 Non-Chronic 1.26E+13 VS 

8 0.253 1.070 0.571 0.188 2.083 4 Non-Chronic 1.54E+11 VS 

9 0.166 0.737 0.431 0.192 1.526 4 Non-Chronic 4.28E+11 VS 

10 0.911 4.240 1.313 0.524 6.988 1 Non-Chronic 4.82E+08 VS 

11 0.131 0.543 0.227 0.127 1.027 6 Non-Chronic 3.43E+08 VS 

12 0.600 3.578 1.550 0.802 6.530 18 Non-Chronic 1.62E+02 MS 

13 0.141 0.492 0.209 0.073 0.915 21 Non-Chronic 8.55E+01 W 

14 0.180 2.155 1.920 0.891 5.147 6 Non-Chronic 3.81E+04 S 

15 0.201 0.838 0.771 0.207 2.016 18 Non-Chronic 3.26E+03 M 

16 0.613 4.249 3.488 3.629 11.978 26 Chronic 8.27E-07 VS 

17 0.137 0.456 0.200 0.115 0.909 25 Chronic 1.51E-01 INC 

18 0.316 1.356 0.771 0.311 2.755 22 Chronic 1.07E-02 W 

19 0.089 0.197 0.164 0.074 0.524 43 Chronic 1.31E-03 M 

20 0.031 0.223 0.265 0.397 0.916 38 Chronic 6.47E-03 M 

21 0.061 0.255 0.196 0.061 0.573 36 Chronic 2.23E-03 M 

22 0.062 0.217 0.149 0.083 0.511 36 Chronic 5.88E-03 M 

23 0.020 0.224 0.165 0.102 0.511 60 Chronic 8.21E-05 S 

24 0.083 0.275 0.117 0.093 0.568 93 Chronic 1.73E-05 S 

25 0.043 0.207 0.135 0.074 0.460 43 Chronic 4.46E-04 MS 
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Table 3a. E14:0, E16:0, E18:1, E18:0, FAEEs and EtG concentration levels relative to the selected subjects 

belonging to the “Test” group. EtG and E16:0 values higher than the cut-offs established by SoHT (30 pg/mg 

and 0.35 ng/mg, respectively) are reported in bold. PLS-DA classification, likelihood ratio values, and their 

relative verbal translation are reported [41]. Support strength: INC = Incoherent; W = weak; M = moderate; 

MS = moderately strong; S = strong; VS = very strong. 

 

Real caseworks individuals (“Test” group) 

ID 
E14:0 
(ng/mg) 

E16:0 
(ng/mg) 

E18:1 
(ng/mg) 

E18:0 
(ng/mg) 

FAEEs 
(ng/mg) 

EtG 
(pg/mg) 

Self-declared 
Classification 

PLS-DA 
Classification 

Likelihood 
Ratio 

Strength 
of the 
support 

1 0.002 0.078 0.009 0.016 0.104 3 Non-Chronic Non-Chronic 1.04E+39 VS 
2 0.002 0.004 0.009 0.007 0.021 2 Non-Chronic Non-Chronic 3.74E+51 VS 
3 0.002 0.095 0.210 0.013 0.320 2 Non-Chronic Non-Chronic 7.00E+20 VS 
4 0.002 0.238 0.111 0.016 0.366 9 Non-Chronic Non-Chronic 4.56E+09 VS 
5 0.002 0.017 0.035 0.008 0.062 2 Non-Chronic Non-Chronic 2.87E+36 VS 
6 0.268 0.056 0.009 0.029 0.361 2 Non-Chronic Non-Chronic 2.03E+42 VS 
7 0.002 0.061 0.009 0.008 0.079 2 Non-Chronic Non-Chronic 2.36E+46 VS 
8 0.015 0.131 0.136 0.009 0.292 3 Non-Chronic Non-Chronic 3.65E+16 VS 
9 0.002 0.216 0.009 0.099 0.325 3 Non-Chronic Non-Chronic 7.23E+40 VS 
10 0.002 0.112 0.009 0.004 0.126 3 Non-Chronic Non-Chronic 3.20E+37 VS 
11 0.002 0.004 0.023 0.006 0.034 3 Non-Chronic Non-Chronic 5.11E+37 VS 
12 0.002 0.004 0.009 0.001 0.015 2 Non-Chronic Non-Chronic 3.49E+53 VS 
13 0.002 0.004 0.009 0.001 0.015 3 Non-Chronic Non-Chronic 5.83E+47 VS 
14 0.002 0.027 0.009 0.003 0.041 1 Non-Chronic Non-Chronic 1.15E+61 VS 
15 0.002 0.055 0.009 0.001 0.066 14 Non-Chronic Non-Chronic 2.40E+22 VS 
16 0.002 0.067 0.009 0.004 0.081 3 Non-Chronic Non-Chronic 5.46E+38 VS 
17 0.002 0.078 0.009 0.001 0.089 2 Non-Chronic Non-Chronic 2.93E+44 VS 
18 0.002 0.051 0.009 0.001 0.062 7 Non-Chronic Non-Chronic 3.82E+29 VS 
19 0.002 0.016 0.009 0.004 0.030 3 Non-Chronic Non-Chronic 6.39E+42 VS 
20 0.002 0.004 0.009 0.004 0.018 3 Non-Chronic Non-Chronic 2.60E+46 VS 
21 0.002 0.072 0.009 0.022 0.105 2 Non-Chronic Non-Chronic 1.48E+47 VS 
22 0.002 0.004 0.009 0.039 0.053 2 Non-Chronic Non-Chronic 4.89E+48 VS 
23 0.002 0.152 0.193 0.795 1.142 3 Non-Chronic Non-Chronic 1.88E+19 VS 
24 0.002 0.186 0.148 0.655 0.990 3 Non-Chronic Non-Chronic 1.14E+21 VS 
25 0.002 0.459 0.043 1.207 1.711 2 Non-Chronic Non-Chronic 1.08E+42 VS 
26 0.002 0.213 0.009 0.043 0.266 2 Non-Chronic Non-Chronic 1.82E+48 VS 
27 0.002 0.436 4.680 1.162 6.279 3 Non-Chronic Non-Chronic 7.30E+04 S 
28 0.002 0.500 0.076 1.596 2.174 3 Non-Chronic Non-Chronic 2.73E+29 VS 
29 0.002 0.004 0.009 0.041 0.055 3 Non-Chronic Non-Chronic 9.31E+41 VS 
30 0.002 0.209 0.026 0.657 0.894 3 Non-Chronic Non-Chronic 2.70E+34 VS 
31 0.091 0.259 0.126 0.010 0.486 2 Non-Chronic Non-Chronic 4.43E+21 VS 
32 0.390 1.028 0.583 0.131 2.132 5 Non-Chronic Non-Chronic 6.24E+07 VS 
33 0.002 0.064 0.009 0.057 0.131 5 Non-Chronic Non-Chronic 1.49E+31 VS 
34 0.011 0.052 0.009 0.033 0.105 2 Non-chronic Non-Chronic 7.96E+45 VS 
35 0.002 0.022 0.009 0.046 0.077 8 Non-chronic Non-Chronic 9.95E+26 VS 
36 0.097 0.517 0.321 0.107 1.042 17 Non-chronic Non-Chronic 1.03E+04 S 
37 0.005 0.008 0.023 0.024 0.060 26 Non-chronic Non-Chronic 2.96E+13 VS 
38 0.012 0.044 0.009 0.028 0.093 34 Non-chronic Non-Chronic 7.42E+10 VS 
39 0.014 0.019 0.025 0.023 0.081 27 Non-chronic Non-Chronic 4.00E+09 VS 
40 0.015 0.045 0.094 0.024 0.178 22 Non-chronic Non-Chronic 7.49E+04 S 
41 0.013 0.054 0.047 0.024 0.138 25 Non-chronic Non-Chronic 3.16E+06 VS 
42 0.012 0.033 0.022 0.030 0.097 28 Non-chronic Non-Chronic 1.27E+09 VS 
43 0.027 0.279 0.232 0.084 0.623 98 Chronic Chronic 2.64E-04 MS 
44 0.140 0.551 0.972 0.050 1.714 59 Chronic Chronic 3.97E-05 S 
45 1.211 2.218 1.379 1.163 5.971 201 Chronic Chronic 2.60E-08 VS 
46 0.748 2.525 4.282 0.498 8.053 252 Chronic Chronic 1.82E-06 VS 
47 0.081 0.415 0.320 0.108 0.923 153 Chronic Chronic 1.01E-06 VS 
48 0.095 0.447 0.352 0.101 0.995 147 Chronic Chronic 6.58E-05 S 
49 0.101 0.695 0.424 0.171 1.391 273 Chronic Chronic 5.16E-06 VS 
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Table 3b. E14:0, E16:0, E18:1, E18:0, FAEEs and EtG concentration levels relative to the selected subjects 

belonging to the “SerD” group. EtG and E16:0 values higher than the cut-offs established by SoHT (30 pg/mg 

and 0.35 ng/mg, respectively) are reported in bold. PLS-DA classification, likelihood ratio values, and their 

relative verbal translation are reported [41]. Support strength: INC = Incoherent; W = weak; M = moderate; 

MS = moderately strong; S = strong; VS = very strong. 

 
Real caseworks individuals (“SerD” group) 

ID 
E14:0 
(ng/mg) 

E16:0 
(ng/mg) 

E18:1 
(ng/mg) 

E18:0 
(ng/mg) 

FAEEs 
(ng/mg) 

EtG 
(pg/mg) 

Self-declared 
Classification 

PLS-DA 
Classification 

Likelihood 
Ratio 

Strength 
of the 
support 

50 1.211 2.218 1.379 1.163 5.971 194 Chronic Chronic 2.55E-08 VS 

51 0.005 0.008 0.023 0.024 0.060 23 Non-Chronic Non-Chronic 1.10E+14 VS 

52 0.012 0.044 0.009 0.028 0.094 3 Non-Chronic Non-Chronic 3.12E+37 VS 

53 0.014 0.019 0.025 0.023 0.081 29 Non-Chronic Non-Chronic 1.69E+09 VS 

54 0.748 2.525 4.282 0.498 8.053 149 Chronic Chronic 4.51E-08 VS 

55 0.015 0.045 0.094 0.024 0.178 2 Non-Chronic Non-Chronic 1.37E+25 VS 

56 0.013 0.054 0.047 0.024 0.138 2 Non-Chronic Non-Chronic 5.65E+30 VS 

57 0.078 0.211 0.328 0.141 0.757 278 Chronic Chronic 1.12E-07 VS 

58 0.106 0.280 0.328 0.118 0.832 42 Chronic Chronic 1.63E-03 M 

59 0.257 0.552 0.497 0.141 1.447 266 Chronic Chronic 3.54E-08 VS 

60 0.141 0.548 0.367 0.179 1.235 136 Chronic Chronic 1.56E-07 VS 

61 0.002 0.044 0.009 0.001 0.056 1 Non-Chronic Non-Chronic 1.31E+59 VS 

62 0.214 0.617 0.477 0.151 1.458 307 Chronic Chronic 7.39E-09 VS 

63 0.096 0.452 0.217 0.623 1.388 77 Chronic Chronic 2.83E-05 S 

64 0.081 0.427 0.320 0.108 0.935 85 Chronic Chronic 2.86E-05 S 

65 0.095 0.447 0.352 0.101 0.995 24 Non-Chronic Non-Chronic 1.07E+02 M 

66 0.101 0.695 0.424 0.171 1.391 104 Chronic Chronic 2.75E-06 VS 

67 0.007 0.016 0.002 0.034 0.060 2 Non-Chronic Non-Chronic 1.53E+61 VS 

68 0.049 0.242 0.252 0.092 0.637 62 Chronic Chronic 1.94E-03 M 

69 0.012 0.033 0.022 0.030 0.097 2 Non-Chronic Non-Chronic 2.31E+37 VS 

70 0.079 0.309 0.250 0.059 0.696 184 Chronic Chronic 1.47E-05 S 

71 0.005 0.028 0.012 0.020 0.066 3 Non-Chronic Non-Chronic 4.08E+36 VS 

72 0.186 0.286 0.206 0.059 0.738 1 Non-Chronic Non-Chronic 1.11E+35 VS 

73 0.037 0.154 0.127 0.047 0.365 1 Non-Chronic Non-Chronic 1.42E+37 VS 

74 1.143 2.912 1.743 0.343 6.141 44 Non-Chronic Chronic 7.10E-06 VS 

75 0.131 0.626 0.448 0.110 1.315 85 Non-Chronic Chronic 5.79E-04 MS 

76 1.429 3.299 1.974 0.606 7.308 82 Non-Chronic Chronic 1.04E-07 VS 

77 0.436 1.126 1.096 0.158 2.817 81 Non-Chronic Chronic 1.86E-05 VS 

78 0.086 0.165 0.586 0.001 0.838 70 Non-Chronic Chronic 4.49E-03 M 

79 0.001 0.349 0.372 0.117 0.839 82 Non-Chronic Chronic 1.08E-03 M 

80 0.057 0.448 0.672 0.362 1.539 37 Non-Chronic Chronic 4.10E-03 M 

81 0.005 0.073 0.027 0.028 0.132 19 Chronic Non-Chronic 9.35E+10 VS 
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