153 research outputs found

    Evaluation of In vivo Bioactivity of a Mutated Streptokinase

    Get PDF
     Background: Immunogenicity of Streptokinase, as a thrombolytic drug, has limited its clinical use. Elimination of the amino acid residues that are responsible for immunogenicity while don’t affect the bioactivity of streptokinase is worthy. Recently, we modified the streptokinase through the elimination of 42 amino acids from its’ C-terminal and assessed its bioactivity in vitro. In this study, bioactivity of the mutated-streptokinase determined and compared with those of commercially available streptokinase (Heberkinase) in rabbits with induced blood clot.Materials and Methods: . Recombinant mutated streptokinase was purified and its lipopolysaccharide  contained  remove and evaluated by LAL test. Thrombolytic activity of drug was evaluated by rabbit jugular vein as in vivo thrombosis model. The thrombolytic property of the drug was evaluated with determining of D-dimer in plasma.Results:. The results showed in vivo bioactivity of both truncated and commercial streptokinase (p<0.05). This study showed an important influence of the 42 amino acids of C-terminal in bioactivity of the streptokinase.Conclusion: Clinical use of the r-streptokinase requires more modification to restore its’ activity in vivo. This product may be a promising choice for clinical use after confirmation of its stability and non-immunogenicity

    Characterization of lung fibroblasts more than two decades after mustard gas exposure

    Get PDF
    Purpose: In patients with short-term exposure to the sulfur mustard gas, the delayed cellular effects on lungs have not been well understood yet. The lung pathology shows a dominant feature consistent with obliterative bronchiolitis, in which fibroblasts play a central role. This study aims to characterize alterations to lung fibroblasts, at the cellular level, in patients with delayed respiratory complications after short-term exposure to the sulfur mustard gas. Methods: Fibroblasts were isolated from the transbronchial biopsies of patients with documented history of exposure to single high-dose sulfur mustard during 1985-7 and compared with the fibroblasts of control subjects. Results: Compared with controls, patients' fibroblasts were thinner and shorter, and showed a higher population doubling level, migration capacity and number of filopodia. Sulfur mustard decreased the in vitro viability of fibroblasts and increased their sensitivity to induction of apoptosis, but did not change the rate of spontaneous apoptosis. In addition, higher expression of alpha smooth muscle actin showed that the lung's microenvironment in these patients is permissive for myofibroblastic differentiation. Conclusions: These findings suggest that in patients under the study, the delayed pulmonary complications of sulfur mustard should be considered as a unique pathology, which might need a specific management by manipulation of cellular components. © 2015 Pirzad Jahromi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Biological Response of Biphasic Hydroxyapatite/Tricalcium Phosphate Scaffolds Intended for Low Load-Bearing Orthopaedic Applications:

    Get PDF
    In this study, a calcium phosphate scaffold of hydroxyapatite (HAp) and dicalcium phosphate dihydrate (DCPD) for application in osteoconductive and osteoinductive scaffolds was synthesized and characterized. The important note is that the prepared composites converted to HAp/tricalcium phosphate (TCP) after heat-treatment. This class of composites is interesting because porous HAp/TCP generally degrade more rapid than HAp due to the increased resorption rate of TCP. According to the obtained results, the values of elastic modulus, compressive strength and density of the samples reduced with increasing the percentage of the DCPD phase. It is worth mentioning that the mechanical properties of the prepared samples were near the natural compact bone. The samples were examined in vitro to confirm the apatite forming ability of the composites. Also, in vivo examination in a rabbit model was employed. After fully observation it was concluded that new bone formed on the pore walls, as osteoids and osteoclasts were evident two months postoperatively. Based on the obtained results, the prepared scaffolds seem to be a promising biomaterial for low weight bearing orthopaedic applications

    Conductive chitosan/polyaniline hydrogel with cell-imprinted topography as a potential substrate for neural priming of adipose derived stem cells

    Get PDF
    Biophysical characteristics of engineered scaffolds such as topography and electroconductivity have shown potentially beneficial effects on stem cell morphology, proliferation, and differentiation toward neural cells. In this study, we fabricated a conductive hydrogel made from chitosan (CS) and polyaniline (PANI) with induced PC12 cell surface topography using a cell imprinting technique to provide both topographical properties and conductivity in a platform. The engineered hydrogel's potential for neural priming of rat adipose-derived stem cells (rADSCs) was determined in vitro. The biomechanical analysis revealed that the electrical conductivity, stiffness, and hydrophobicity of flat (F) and cell-imprinted (CI) substrates increased with increased PANI content in the CS/PANI scaffold. The conductive substrates exhibited a lower degradation rate compared to non-conductive substrates. According to data obtained from F-actin staining and AFM micrographs, both CI(CS) and CI(CS-PANI) substrates induced the morphology of rADSCs from their irregular shape (on flat substrates) into the elongated and bipolar shape of the neuronal-like PC12 cells. Immunostaining analysis revealed that both CI(CS) and CI (CS-PANI) significantly upregulated the expression of GFAP and MAP2, two neural precursor-specific genes, in rADSCs compared with flat substrates. Although the results reveal that both cell-imprinted topography and electrical conductivity affect the neural lineage differentiation, some data demonstrate that the topography effects of the cell-imprinted surface have a more critical role than electrical conductivity on neural priming of ADSCs. The current study provides new insight into the engineering of scaffolds for nerve tissue engineering. © 2021 The Royal Society of Chemistry

    Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage

    No full text
    The aim of this work is to determine the mechanical and tribological behavior of V–C–N coatings deposited on industrial steel substrates (AISI 8620) by using carbon–nitride coatings as a protective materials.Метою роботи було визначення механічної та трибологічної поведінки V–C–N-покриттів, осаджених на сталеві (AISI 8620) підкладки, для використання як захисні матеріали.Целью работы было определение механического и трибологического поведения V–C–N-покрытий, осажденных на стальные (AISI 8620) подложки, для использования как защитные материалы.This research was supported by Universidad Militar Nueva Granada, contract number ING-1775-2015, Universidad del Quindío and the CIC biomaGUNE, Platform Manager – Surface Analysis and Fabrication, Spain

    Bacteriophage based biosensors: Trends, outcomes and challenges

    Get PDF
    Foodborne pathogens are one of the main concerns in public health, which can have a serious impact on community health and health care systems. Contamination of foods by bacterial pathogens (such as Staphylococcus aureus, Streptococci, Legionella pneumophila, Escherichia coli, Campylobacter jejuni and Salmonella typhimurium) results in human infection. A typical example is the current issue with Coronavirus, which has the potential for foodborne transmission and ruling out such concerns is often difficult. Although, the possible dissemination of such viruses via the food chain has been raised. Standard bacterial detection methods require several hours or even days to obtain the results, and the delay may result in food poisoning to eventuate. Conventional biochemical and microbiological tests are expensive, complex, time-consuming and not always reliable. Therefore, there are urgent demands to develop simple, cheap, quick, sensitive, specific and reliable tests for the detection of these pathogens in foods. Recent advances in smart materials, nanomaterials and biomolecular modeling have been a quantum leap in the development of biosensors in overcoming the limitations of a conventional standard laboratory assay. This research aimed to critically review bacteriophage-based biosensors, used for the detection of foodborne pathogens, as well as their trends, outcomes and challenges are discussed. The future perspective in the use of simple and cheap biosensors is in the development of lab-on-chips, and its availability in every household to test the quality of their food. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Optimization of decellularized human placental macroporous scaffolds for spermatogonial stem cells homing

    Get PDF
    Decellularized scaffolds have been found to be excellent platforms for tissue engineering applications. The attempts are still being made to optimize a decellularization protocol with successful removal of the cells with minimal damages to extracellular matrix components. We examined twelve decellularization procedures using different concentrations of Sodium dodecyl sulfate and Triton X-100 (alone or in combination), and incubation time points of 15 or 30 min. Then, the potential of the decellularized scaffold as a three-dimensional substrate for colony formation capacity of mouse spermatogonial stem cells was determined. The morphological, degradation, biocompatibility, and swelling properties of the samples were fully characterized. The 0.5/30 SDS/Triton showed optimal decellularization with minimal negative effects on ECM (P � 0.05). The swelling ratios increased with the increase of SDS and Triton concentration and incubation time. Only 0.5/15 and 30 SDS showed a significant decrease in the SSCs viability compared with other groups (P < 0.05). The SSCs colony formation was clearly observed under SEM and H&E stained slides. The cells infiltrated into the subcutaneously implanted scaffold at days 7 and 30 post-implantation with no sign of graft rejection. Our data suggest the 0.5/30 SDS/Triton as an excellent platform for tissue engineering and reproductive biology applications. Figure not available: see fulltext. © 2021, The Author(s)

    Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro

    Get PDF
    Background: Nowadays, the number of cancer survivors is significantly increasing as a result of efficient chemo/radio therapeutic treatments. Female cancer survivors may suffer from decreased fertility. In this regard, different fertility preservation techniques were developed. Artificial ovary is one of these methods suggested by several scientific groups. Decellularized ovarian cortex has been introduced as a scaffold in the field of human fertility preservation. This study was carried out to compare decellularization of the ovarian scaffold by various protocols and evaluate the follicle survival in extracellular matrix (ECM)-alginate scaffold. Results: The micrographs of H&E and DAPI staining confirmed successful decellularization of the ovarian cortex in all experimental groups, but residual DNA content in SDS-Triton group was significantly higher than other groups (P < 0.05). SEM images demonstrated that complex fiber network and porosity structure were maintained in all groups. Furthermore, elastin and collagen fibers were observed in all groups after decellularization process. MTT test revealed higher cytobiocompatibility of the SDS-Triton-Ammonium and SDS-Triton decellularized scaffolds compared with SDS groups. Compared to the transferred follicles into the sodium alginate (81), 85.9 of the transferred follicles into the decellularized scaffold were viable after 7 days of cultivation (P = 0.04). Conclusion: Although all the decellularization procedures was effective in removal of cells from ovarian cortex, SDS-Triton-Ammonium group showed less residual DNA content with higher cytobiocompatibility for follicles when compared with other groups. In addition, the scaffold made from ovarian tissues decellularized using SDS-Triton-Ammonium and sodium alginate is suggested as a potential 3D substrate for in vitro culture of follicles for fertility preservation. © 2021, The Author(s)

    Antibacterial smart hydrogels: New hope for infectious wound management

    Get PDF
    Millions of people die annually due to uncured wound infections. Healthcare systems incur high costs to treat wound infections. Tt is predicted to become more challenging due to the rise of multidrug-resistant conditions. During the last decades, smart antibacterial hydrogels could attract attention as a promising solution, especially for skin wound infections. These antibacterial hydrogels are termed 'smart' due to their response to specific physical and chemical environmental stimuli. To deliver different drugs to particular sites in a controlled manner, various types of crosslinking strategies are used in the manufacturing process. Smart hydrogels are designed to provide antimicrobial agents to the infected sites or are built from polymers with inherent disinfectant properties. This paper aims to critically review recent pre-clinical and clinical advances in using smart hydrogels against skin wound infections and propose the next best thing for future trends. For this purpose, an introduction to skin wound healing and disease is presented and intelligent hydrogels responding to different stimuli are introduced. Finally, the most promising investigations are discussed in their related sections. These studies can pave the way for producing new biomaterials with clinical applications

    The in vivo effect of Lacto-N-neotetraose (LNnT) on the expression of type 2 immune response involved genes in the wound healing process

    Get PDF
    Lacto-n-neotatraose (LNnT) oligosaccharide shows properties such as anti-inflammatory, type 2 immune response induction, induced angiogenesis, and anti-bacterial effects. Here, we hypothesized that the application of LnNT in the skin full-thickness wound can accelerate the healing process through its anti-inflammatory effect as well as induction of type 2 immune responses. In this study, we evaluated the cell viability of fibroblasts in the presence of LNnT. The full-thickness wound model was created by punch biopsy. The mice were treated intradermaly with LNnT at the concentrations of 100 and 200 µg or PBS as a control group. The wounds samples were compared based on the macroscopic and histological evaluations. The amount of collagen deposition and expression of genes involved in type 2 immunity were measured by the hydroxyproline assay and real time PCR method, respectively. Our results showed that LNnT had no negative effect on the cell viability of fibroblasts. LNnT increased the wound closure rate on day 7 post-wounding. H&E stain analysis revealed that mice treated with 200 µg LNnT exhibited better healing score, follicle formation, and lower epidermal thickness index. The mice treated with LNnT exhibited a lower collagen deposition on day 21 and higher collagen content on days 7 and 14 post-treatment. The LNnT groups also exhibited a lower number of neutrophils and a higher number of basal cells and fibroblasts. The expression rate of IL-10, IL-4, and IL-13 was higher in the LNnT groups. These results showed the high potential of LNnT for use in treatment of full-thickness wounds. © 2020, The Author(s)
    corecore