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Abstract: Foodborne pathogens are one of the main concerns in public health, which can have a serious
impact on community health and health care systems. Contamination of foods by bacterial pathogens
(such as Staphylococcus aureus, Streptococci, Legionella pneumophila, Escherichia coli, Campylobacter jejuni
and Salmonella typhimurium) results in human infection. A typical example is the current issue with
Coronavirus, which has the potential for foodborne transmission and ruling out such concerns is often
difficult. Although, the possible dissemination of such viruses via the food chain has been raised.
Standard bacterial detection methods require several hours or even days to obtain the results, and the
delay may result in food poisoning to eventuate. Conventional biochemical and microbiological
tests are expensive, complex, time-consuming and not always reliable. Therefore, there are urgent
demands to develop simple, cheap, quick, sensitive, specific and reliable tests for the detection of these
pathogens in foods. Recent advances in smart materials, nanomaterials and biomolecular modeling
have been a quantum leap in the development of biosensors in overcoming the limitations of a
conventional standard laboratory assay. This research aimed to critically review bacteriophage-based
biosensors, used for the detection of foodborne pathogens, as well as their trends, outcomes and
challenges are discussed. The future perspective in the use of simple and cheap biosensors is in the
development of lab-on-chips, and its availability in every household to test the quality of their food.

Keywords: bacteriophage; biosensors; nanomaterials; foodborne pathogens; bacteria; smart materials;
nanotechnology; nanoparticles; coronavirus

1. Introduction

Over the last several decades, the prevalence of food poisoning has become a major world health
issue. This may be due to the increase in intercontinental transportation of food. Dr. Oliver, at the
University of Tennessee, TN, USA, an expert in the foodborne pathogens, has recently reported these
problems in detail [1]. The Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
assesses more than 36 million cases of the disease annually, are due to foodborne and waterborne
pathogens infections [2]. The most common causes of food poisoning are diarrhea, nausea, vomiting
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and stomach cramps. Food poisoning is dangerous for the elderly, as well as children, patients with
chronic health conditions or weakened immune systems [3,4].

2. Common Foodborne Pathogens

According to the World Health Organization (WHO, Geneva, Switzerland, 2015, www.who.int),
there are many possible causes of food poisoning, including; bacteria, viruses, poison, parasites,
and many others. Microorganisms involved in food poisoning are generally present in all kinds of
foods, especially in fruits, vegetables, as well as supermarket ready-made foods and takeaways [5].
The main pathogens responsible for serious foodborne disease outbreaks are Listeria monocytogenes,
Staphylococcus aureus, Salmonella, Campylobacter, Cryptosporidium and E. coli 0157:H7 [6].

3. Types of Common Methods Used for the Detection of Pathogens

Conventional methods for the detection of foodborne pathogens depend on specific biochemical
and microbiological tests [7]. These methods are time-consuming depending on the time it takes to
pre-enrichment of the microorganisms and then culturing them on selective media. These methods are
time-consuming, depending on the time it takes for the pre-enrichment of microorganisms and then
culturing them on selective media.

In particular, the major problems of current standard technologies are their enrichment steps
and time-consuming up to 7–10 days, resulting in inconvenience in many industrial applications,
particularly in food [8]. Moreover, viable bacterial strains in the environment can become non-cultivable
(viable-but non-cultivable (VBNC)) leading to an underestimation of pathogen numbers or a failure to
isolate a pathogen from a contaminated sample. Successively, mass spectrometry has been proposed to
increase the speed and sensitivity of culture methods, but these methods have high a cost and require
expertise for analyze and interpretation of the data. On the contrary, biochemical immunoassays, such
as ELISA, although simple and rapid, can have low sensitivity for the detection of pathogens.

Several different types of nucleic-acid-based assays have been developed and used as a faster
technique to detect foodborne pathogens, for example, amplification (PCR), microarrays and biochips [9].
However, PCR techniques of detection, as well as recent multiplex-PCR and reverse transcriptase PCR
(RT-PCR) are inefficient to analyze large sample volume without pre-enrichment and have high costs
that renders them difficult for regular use [10]. Figure 1 shows the steps involved in the diagnosis
and analysis of food samples, using current standard techniques, and the time it takes to detect
the pathogen.

Consequently, recently, many researchers in the multidisciplinary team been working in research
and development (R and D) of a biosensor, with the following specification, fast report output, simple,
specific and sensitive devices able to in-situ, real-time monitoring, at low cost. There have been
a number of emerging biosensors technologies, show potential approaches for in situ analysis of
pathogen detection. This research aimed, critically review recent advances in biosensors that use
bacteriophages or phage-derived as bio-probes for food pathogen detection.

www.who.int
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biological analytes, such as microorganisms, viruses, and biomolecules [11]. The biosensor is 
commonly composed of a biologically active sensitive element (biological element) and an electronic 
part (sensor or transducer). The operating principles are as follows: “the biological element” interacts 
with the substrate to be analyzed and a transduction system; “the sensor” converts the biochemical 
response into an electrical signal. This signal digitized into a numeric value, giving the final 
information. Biosensors can be classified according to the transduction technologies used. In the past 
decade, different groups of transductions have been introduced; these have led to the formation of 
three main classes: Optical, mass-based and electrochemical transducers (Figure 2) [12]. The front 
part of the biosensor, the probes, plays a major role in the identification and detection of the 
pathogens. These give biosensors the ability to analyze a wide range of complex samples in various 
fields, including the diagnosis of food pathogens, clinical diagnosis and environmental monitoring. 
Biosensors have been used and played as a useful tool for the direct detection of the pathogen in the 
factories during the food processed food. Unlike microbiological and molecular methods, biosensors 
can detect the pathogen immediately and accurately, and this helps to detect the contamination level 
and the type of food contamination [6]. 
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Figure 1. The steps involved in the diagnosis and analysis of food samples using common techniques
and the time it takes to detect the pathogen.

4. Biosensors in Foodborne Pathogen Detection

The Biosensors are simple and rapid devices, based on organic probes, which are able to identify
biological analytes, such as microorganisms, viruses, and biomolecules [11]. The biosensor is commonly
composed of a biologically active sensitive element (biological element) and an electronic part (sensor
or transducer). The operating principles are as follows: “the biological element” interacts with the
substrate to be analyzed and a transduction system; “the sensor” converts the biochemical response
into an electrical signal. This signal digitized into a numeric value, giving the final information.
Biosensors can be classified according to the transduction technologies used. In the past decade,
different groups of transductions have been introduced; these have led to the formation of three main
classes: Optical, mass-based and electrochemical transducers (Figure 2) [12]. The front part of the
biosensor, the probes, plays a major role in the identification and detection of the pathogens. These
give biosensors the ability to analyze a wide range of complex samples in various fields, including
the diagnosis of food pathogens, clinical diagnosis and environmental monitoring. Biosensors have
been used and played as a useful tool for the direct detection of the pathogen in the factories during
the food processed food. Unlike microbiological and molecular methods, biosensors can detect the
pathogen immediately and accurately, and this helps to detect the contamination level and the type of
food contamination [6].
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5. Bio-Probe

Bio-probes are the most important components of biosensors because responsible to bind and
identify the analytes targets. The two main characteristics of bio-probes are specificity and high
affinity for the analyte. Figure 3 shows the different components of a diagnostic sensor. The common
bio-probe, used in biosensor devices, are antibodies, proteins, DNA/RNA aptamers and carbohydrates.
However, many of these are usually susceptible to environmental conditions and the need for
laborious immobilization methods for binding on the sensor substrate. Only recent studies employed
bacteriophages (or phage) or derived-phage, such as phage receptor binding proteins (RBPs) and most
lately phage-display peptides (PDPs) like a valid alternative of standard bio-probes.
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5.1. Phages Wild Type

Bacteriophages (phages) are viruses ubiquitous in all environments, including soil, food ground
and surface water. They specifically bind the host bacteria and inject their DNA to begin the
multiplication and propagation of mature virions [13]. Phages can propagate new virions in two ways:
Lytic or lysogenic cycle (Figure 4).
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Lytic cycle: Phages attach to their host bacteria, insert their DNA and take over the host machinery
to dissemination new virions that lyse the bacteria and infect a new host (lytic phages). The host cells
provide molecular blocks and enzymes that are needed to multiply the phage genomes and generate a
progeny phage. Phages produce several endolysins and holin lysis proteins inside the host cell. Holins
are small proteins in the cytoplasmic membrane of host bacteria that lead to peptidoglycan cell wall
bacteria lysis by endolysins and release of produced phages. These phages in the external environment
can infect and destroy other adjacent bacteria. In a wide range of bacterial species, lytic phage produce
infection specifically [14].

Lysogenic cycle: Integrate their genome into the host DNA, remain latent until they arouse for
replication and dissemination (lysogenic phage). A Prophage, contained in the host cell, is called
lysogen. While, this DNA in the host genome is called a prophage, the lysogenic cycle can continue
indefinitely, except in some cases, such as adverse conditions of the environment and bacteria exposure
to stress [14].

Consequently, the bacteriophage used like bio-probe in biosensor devises offer several advantages,
such as (1) specificity to host bacteria, consequently efficient bacteria screening [15], (2) easy to generate
mass quantities of progeny phages, due to their short replication time, (3) ability to tolerate critical
conditions, such as organic solvents and large range of pH and temperature [16]. It is important to
understand the characteristics of phages, such as the physical and chemical properties, in order to
design the biosensor platform able to bind the phage without losing their ability to recognize the bacteria
target. Phages can bind to the gold surface trough van der Waals bonding, hydrophobic bonding and
covalent bonding between the gold surface and the amine and thiol groups. This strategy is also used
in surface plasmon resonance (SPR) sensor and quartz crystal microbalance (QCM) sensor using phage
as a probe for pathogen detection [17]. Nevertheless, optimal condition of physical absorption has
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been found for lytic phages able to detect S. aureus by SPR with detection limit ~104 cfu/mL−1, or using
magnetic elastic sensors [18] capable of detecting Salmonella (detection limit ~103 cfu/mL−1) in milk
and fat-free [19]. However, physical absorption has several limitations, such as non-specific and weak
bonding between phage and sensor surface, leading to desorption during the analytic detection and
low surface coverage of deposited phages [17].

However, the chemical bond gives greater stability to the system. One of the main factors in
these methods is the creation of a strong chemical bond between the phages and biosensor surfaces,
which leads to the development of a stable capture system. In this case, the purity of the suspension
of phages, such as their chemical properties, are important to be aware of before performing any
chemical reactions [20]. Gervais et al. developed an oriented immobilization of T4 phages using the
commonly recognized streptavidin-biotin reaction. The tail-phage was able to detect E. coli through
the expression of biotin in the T4 head, and using the streptavidin-coated gold surface [21]. Moreover,
the T4 phage has been used in the functionalization of magnetic nanobeads, and is used to capture and
concentrate E. coli from milk by Mortari et al. The successive lysis of the bacteria-binding phage leads
to the analysis of endoplasmic material through impedance, with the potential detection limit of 10
CFU/chamber in 30 min [22].

However, the size of the phage particles can be a limitation in any biosensor surfaces, such as in
nanoscale devises. The phages have an enzyme activity relative to their bacterial host [23]. This kind of
enzymatic activity on the biosensor surface causes contradictory signals that contribute to the efficiency
of the pathogen diagnosis. Moreover, results recommend that whole phage bound on sensor platforms
miss their bacterial binding capacity upon drying [24]. As the phages fall on the biosensor surface after
upon drying, it likely makes their tail fibers unable to bind to their bacterial host. In order to overcome
these limitations, engineered phages or derived phages have been applied in the development of
biosensors devises, as discussed later in this review article.

5.2. Engineered Phages

With novel advances in the field of genetic engineering, new phage probes have been designed to
increase the capability or to overcome the limits of the wild-type phages. Recently, N. Wisuthiphaet and
co-workers used engineered bacteriophage, phage T7-ALP, which expresses alkaline phosphatase to
detect E. coli in beverage samples. After infection of the host bacteria, the overexpression of alkaline
phosphatase provides, after the mission of the substrate ELF-97, fluorescence imaging results in
high-detection sensitivity of 100 bacteria for gram in 6 h [25]. In these cases, the specificity of phages,
combined with engineered techniques, have permitted the easy and rapid identification of the target.

Reporter Phages - A reporter phage is an engineered phage to produce a signal upon infection of
target bacteria. This group of phages detects only live and functional cells because when the phages
infect the target bacteria, they activate the cells’ machinery to produce a readily detectable signal,
which indicates that the target is both present and viable. This technique is an advanced method of
bacteria typing [8]. Phage lambda-based cloning vectors bearing a functional bacterial bioluminescence
lux operon was used to improve the reporter phage method. Here, lux operon is expressed in the
process of infection by phage in the host cell as part of the phage gene [13]. “Lux-” or “Gfp-” expressing
phages were successfully used in Salmonella enterica and pathogenic E. coli O157:H7 detection, as well
as for detection of Listeria and Mycobacteria [26]. In a study by Zhang et al., the design of a phage
that contains luciferase NanoLuc (Nluc), reporter phage, was able to detect E. coli 0157:H7, about 5
CFU/mL, in a food sample by bioluminescence over 9 h [27]. The benefit is that the phage specificity
and the strength of the analysis of the phage remove the essential for purification or lengthy sample
preparation [28]. Moreover, recently has been shown a proof-of-concept drinking water diagnostic
assay for low-cost, rapid and sensitive detection of E. coli using T7 reporter phage. T7 was engineered to
express the luceriferase, NanoLuc (NLuc), after the fusion of crystalline cellulose. This novel chimeric
reporter allow the detection of <10 CFU mL−1 E. coli in 3 h from 100 mL water sample [29]. However,
some structural disadvantages associated with this group of phages also have to be stated. To study
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the structure of these phages there is a need to have accurate genetic information as their structure
is labor-intensive. The capacity of the phage capsid naturally creates limitations for the amount of
genetic material that can be presented in the phage genome. General ways to exhibit reporter genes
contain recombination, transposition, direct cloning and homologous [8].

5.3. Phage Display Peptides

The phage display technology must be considered separately. Since, it was first reported in
1985 in Science, phage display technology has evolved as a powerful method for discovery of
antigen-specific peptides. A researcher found that bacteriophages can be genetically manipulated
through the incorporation of exogenous (poly) peptides into its coat proteins, making a peptides
phage library. The filamentous phages, such as fd and M13, are the most commonly used vector to
create random peptide display libraries. Filamentous phages appear as a flexible rod-shaped structure,
with a total length of 880 nm and a diameter of 6.6 nm. Its circular genome, of 6000–8000 bases, is
enclosed in a coat composed of up of 2700 copies of major coat protein (pVIII), 3–5 copies each of
the minor proteins (pIII, pVI and pVII, pIX), on the two ends of the phage particle. In particular,
the foreign peptides (length from 6 to 21 amino acids) have been displayed fused to surface exposed
N-terminus of all coat proteins. However, the most commonly-used coat proteins for phage display
are pIII and pVIII. The phage display libraries consisted of up to 1010 different variants of phage
particles with the linear random peptides [30]. This allows ligands to be screened that have a high
affinity towards the desired antigen, such as eucariotic cells, bacteria or inorganic material. The phage
clones were found to bind, with high affinity, the target, which can be used as a bio-probes in biosensor
devises. In this way, for all possible targets, it is possible to find a “phage-clone” able to recognize
them. The advantage are robust, stable and resistant to temperature variations and hard pH conditions,
such as the wild-type. Moreover, the phage clone presents several copies of peptide of interest, thus
increasing the avidity of the specific target binding, compared to the classic wild-type [31]. It has
introduced several opportunities in various fields, including vaccine design, targeted drug delivery and
antiviral studies [31]. These characteristics make phages an attractive choice as probes for developing
biosensors in several fields [32,33].

5.4. Phage Receptor Binding Proteins

Recently bacteriophage receptor binding proteins (RBPs) have been developed into tools that
make use of their high specificity [34]. RBPs offer several advantages compared to other elements for
example antibodies, including ligand specificity, greater stability, and affinity even against carbohydrate
epitopes [35]. The rapid detection of pathogens prevents disease progression and spread. RBPs are a
practical technology for bacterial diagnosis.

The phage receptor proteins determine the phage-host characteristics and are also considered
as suitable as biological agents. One of the advantages of the RBP is that, without lysis, the bacterial
components of the bacterial cell proliferate through the agglutination and release of the DNA of
the pathogen. RBP often has good resistance to environmental factors, such as temperature and
pH [36]. Poshtiban and coworkers anchored the phage NCTC12673 presenting RBP protein Gp047
on magnetic beads. The modified seeds were used to extract Campylobacter from milk and chicken
samples. In samples infected with 102 CFU/mL of Campylobacter cells through RT-PCR, it was a
prominent improvement measure of more than 80% in 3 h. To confirm the specific adsorption of phage
to Campylobacter, S. typhimurium was used as a negative control [37]. More effort is needed to reach
commercial biosensors, given that the initial experimental results indicate that RBPs are capable of
being used as diagnostic agents in diagnosing pathogens.

6. Phage-Based Biosensors

In recent years, biosensors have been developed as new diagnostic methods to minimize the
limitations of common pathogen detection methods. In phage-based biosensors, bacteriophage is
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attached to the sensor surface, and consequently, it can detect the pathogen in the sample [38]. The main
advantages of this method are sensitive, accuracy and reliably. Bacteriophage-based biosensors have
been used for direct diagnosis of pathogens in fresh foods such as milk [19,39], and water [40] food
matrices [41]. The Table 1 summarizes the advantages of biosensors in pathogenesis.

Table 1. Ideal properties incorporated for microbial biosensor.

Assay time Near real-time response desired (<1 h desirable)
Assay protocol No reagent addition needed

Operator Should be automated and require minimal operator skills
Strain selectivity Ability to distinguish an individual bacterial strain from other strains of the same species

Low detection limit Ability to detect single bacteria in a reasonably small sample volume (from 1 to100 mL)
Species selectivity Ability to distinguish individual bacterial species in the presence of other microorganisms or cell.

Compatible interface Should be compatible with the transduction principle and resist nonspecific binding
Robustness Both mechanical and chemical stability is required
Monitoring Direct, without pre-enrichment

Viable cell count Should discriminate between live and dead cells

6.1. Phage-Based Optical Biosensors

Optical-based bioassay systems are used for rapid diagnosis of pathogens in different experimental
conditions, with high sensitivity and compatibility. Optical biosensors are used as more suitable
diagnostic systems for the detection of pathogens. Detection in optical biosensors is based on the
variations induced in the light properties, such as refractive index, wavelength and polarization [42].
Currently, BIACORE 3000 biosensor and SPREETA biosensor as commercial optical biosensors are
used for the detection of foodborne pathogens. BIACORE 3000 biosensor is used for detecting
L. monocytogenes, with sensitivity of 1 × 105 cells/mL in milk. Salmonella enteritidis and E. coli
O157:H7, and S. typhimurium and S. enteritidis, can be successfully detected by BIACORE 3000. and
SPREETA biosensors, respectively [43]. Wavelengths-based biosensors enable real-time monitoring of
biomolecular interactions by evaluating the kinetics and affinity of the interactions [42]. Planar optical
waveguides contain an optically transparent guiding layer with a refractive index, which is higher than
the substrate layers. The optical waveguide geometry provides an excellent surface for functionalization
and pattering of different recognition elements, and enable the simultaneous detection of multiple
analytes in a single waveguide transducer [44]. Optical techniques are separated into two major
subclasses, fluorescence and label-free, based on their working platform. The most used technique for
these biosensors is the measure of the changed fluorescence, in absorbance or luminescence, of the
biosensor surface after analyte recognition. Furthermore, one of the advantages of the optical biosensor
design of label-free biosensors is the detection of a specific and susceptible bacterial pathogens [45].
The most employed techniques for bacterial detection are fluorescence/phosphorescence spectrometry,
surface Plasmon resonance (SPR), and bio/chemiluminescence.

6.1.1. Surface Plasmon Resonance Sensors (SPR)

For the first time in 1990, SPR was used to detect a spectrum of materials [46]. SPR biosensors are
optical sensors that use special surface plasmon-polaritons—electromagnetic waves, to monitor the
interactions between an analyte in solution and a recognition layer, such as recognize molecules and
phages, immobilized on the SPR sensor surface. SPR biosensing, as a spectroscopic technique, enable
the quantitative and real-time detection of the binding events without labeling the interacting molecules.
The optical system is comprised of an optical surface, a light emitting diode (LED), a glass prism and a
photodiode array. The molecular interactions at the surface cause changes in the refractive index, leading
to changes in the SPR angle of the reflected light. The photodiode array detects SPR angle changes,
and expresses the signals as a response unit (RU). RU is directly proportional to the total mass of the
bound ligands. The chips in these sensors usually contains a gold surface functionalized with specific
biorecognition elements by chemical bounds [47]. Advanced SPR biosensors have been designed to
detect pathogens using a variety of bio-probes in diagnosis of pathogens such as antibodies [48,49],
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bacteriophages [50] and lectins [51]. Bacteriophages are designed as diagnostic probes for specific
detection of pathogens at the SPR level. For example, Singh et al. used immobilized engineered
tail spike proteins derived from the P22 bacteriophage onto gold surfaces using thiol-chemistry, in
order to selective real-time analytical detection of Salmonella with the sensitivity of 103 CFU/mL−1 [24].
This technique successfully detects E. coli O157:H7, methicillin-resistant S. aureus (MRSA) [52], S. aureus,
E. coli K12 [13] and hepatitis B virus (HBV) [53]. Full-length recombinant Det7 phage tail proteins
(Det7T) are recently used in novel SPR devise for detection of Salmonella enterica serovar typhimurium.
Det7T is covalently immobilized on gold-coated surfaces by amine-coupling, and can specifically bind
to S. typhimurium. Rapid detection (~20 min) of 5 × 104−5 CFU/mL S. typhimurium in water and 10%
apple juice was observed by this biosensor [54]. In Table 2 several microorganisms that have been
detected using this technique are summarized. The Plasmon waveguide resonance (PWR) spectroscopy,
as a relatively new biophysical method, has the structures, which can couple high sensitivity of the
SPR sensors and the small resonance width of the dielectric WG sensors. The PWR consists a glass
substrate, a thin metallic layer, and a dielectric layer on the top of the metallic layer. The metallic
layer plays a very important role in exciting the dielectric waveguide modes (transverse magnetic
(TM), and transverse electric (TE). As an example, optical metal clad leaky waveguide (MCLW) sensor
can detect Bacillus subtilis var. niger using index changes, scattering and fluorescence from bacterial
spores bond to immobilized antibody [55].

Table 2. Table based on phage-based biosensors in diagnosis of pathogens according to the type of
phage, type of sample, duration of diagnosis and limit of detection achieved. Keys, NS, not stated.

Transducer Organism Bio-Probe
Phage

Sample
Matrix

Limit of
Detection
(CFU/mL)

Time Assay
(min) Ref

Optical biosensor E. coli K12 T4 Skim milk 7 × 102 NS [3,56]

Optical biosensor E. coli
O157:H7 T4 Skim milk 3 × 103 NS [52,56,57]

Optical biosensor MRSA BP14 − 103 NS [52]

Optical biosensor Salmonella P22, TSP Chicken
carcass, wash 4.4 × 104 3 [24,58,59]

Optical biosensor C. jejuni NCTC 12673
TSP

−Contaminant
milk 102 45 [60,61]

Bioluminesence E. coli E. coli −
Fewer than

103 60 [62]

Bioluminesence Salmonella
enteritidis SJ2 − 103 120 [63]

Fluorescent E.coli O157:H7 T7
Culture
medium,

water
107 10 [40,64]

QCM Salmonella
typhimurium Filamentous Chicken wash 102 60 [65,66]

Impedimetric E. coli T4 − 104 30 [61–63]

6.1.2. Bioluminescence Sensors

Bioluminescence through the oxidation of organic compounds (Luciferin), due to the enzyme
Luciferase, produces visible light in the living organisms. Commonly in marine environments, some
bacteria, including Vibrio strains, are widely and abundantly used as luminescent organisms. The ATP
Bioluminescence tests are a sensitive, fast and simple ways for bacterial detection. In this method,
the bacterial cell is lysed and releases intracellular ATP which is measured by luciferase bioluminescence
reaction. The problem of this method is the low specificity in both Adenylate kinase (AK) and ATP
diagnosis. Wu et al. showed that the rate of the release of AK from the bacterial cell depends on the
growth stage, phage type infection time and type of bacteria [63].
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6.1.3. Fluorescent Bioassay

In this way, the fluorescent combination with bacteriophage plays a role in the diagnosis of
pathogens. In this method, fluorescent blended bacteriophages are involved in detecting and binding to
the host bacteria. Phage-bacteria is discovered using flow cytometry or epifluorescent filter technique.
The average sensitivity reported so far is around 104 CFU/mL−1 for flow cytometric and around 102–103

CFU/mL−1 for epifluorescent microscopy detection [67,68]. Goodridge et al. combined this method
with immunomagnetic separation. In this way they could be able to detect 10 to 102 CFU/mL−1 E. coli
O157: H7 in synthetic milk after an enrichment [39] phase for 10 h and 104 CFU/mL−1 of E.coli O157:H7
in broth [69]. This method is also used to identify bacterial toxins [70]. Goldman et al. displayed
a practical phage to select a 12-per peptide that could bind to staphylococcal enterotoxin B (SEB),
which cause food toxication. They could detect low 1.4 ng of SEB per sample in a fluorescence-based
immunoassay using a labeled SEB-binding phage [70].

6.2. Electrochemical Biosensors

6.2.1. Amperometric Biosensors

Amperometric biosensors are based on measuring the flow generated by oxidation or reduction
in response to analyte bio-receptor reactions. In this case, a bio-receptor is usually an enzyme, such
as glucose oxidase, horseradish peroxidase (HRP) and alkaline phosphatase (AP) [71]. In general,
this technology includes a thin plate of gold or platinum or carbon. The main advantage of these
biosensors is that they are simple and easy to use, and at the same time, highly sensitive. The limitation of
this method is low specificity due to interference with active inhibitors, and then the signal inaccuracies.
In this method, a quantification of coliform E. coli K-12 with intermediary phages and intracellular
release of bacterial enzymes, such as D-galactosidase and carbon oxides can be investigated [72].
This sensor detected 1 CFU/100 mL of bacteria from the sample, but need to pre-incubation phase.
Neufeld et al. combined the phage typing technique with amperometric for the specific detection
of Mycobacterium smegmatis, E. coli K12, and Bacillus cereus [72]. The basis of these sensors is that
through phage infection, it causes bacterial leakage and the spread of intracellular bacterial content,
including the enzyme. Enzymatic activity is measurable in a specific substrate. The recent advanced
reports, nanoparticle transducers were used to reduce the limitation of electrochemical biosensors.
The Gold nanoparticle is one of the most common nanoparticles used in MRI, biosensors and targeting
drug delivery for treating brain diseases, significantly increased electrodes sensitivity to the detection
of pathogens. Xu et al. designed micro-gold electrodes with phage T4 for the detection of E. coli.
The sensitivity of this biosensor is in the range of 1.9 × 101–1.9 × 108 CFU/mL bacteria [17]. Table 3 are
summarized in several nanoparticles that have been used for detecting microorganisms.

Table 3. The nanoparticle phage-based biosensors in the diagnosis of pathogens according to type of
phage, type of sample, duration of diagnosis and limit of detection.

Immobilization Material Biosensor Bio-Probe
Phage Organism

Limit of
Detection
(CFU/mL)

Ref

Gold Fluorescence T4 E. coli ND [73]
Nano-aluminium fiber

based filter Bioluminescence Wild type and
modified T4 E. coli 6 × 103 [74]

Silica particle Bioluminescence
lux system

Phage A1122
with lux tag Yersinia pestis 102 [75]

Carbon solid-phase
extraction microarray Impediametric T4 E. coli K12 102–108 [76]

Carbon solid-phase extraction
with magnetic beads Impediametric T4 E. coli K12 102–108 [77]

Pencil graphit electrodes with
gold nano rods Impediametric T4 E. coli K12 102–106 [78]
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6.2.2. Electrochemical Impedance Spectroscopy (EIS) Biosensors

Electrochemical impedance spectroscopy (EIS) is a powerful technique in detecting the
electrochemical system. Functional sinusoidal in the system measures the changes in the electrical
impedance in the medium. The analysis is carried out based on changes in capacitance, conductance,
and impedance. The capacity is often reduced due to the process of microbial metabolism and
impedance decreases [79]. Here, bacteriophages are used as diagnostic probes to detect pathogens
at the electrode surface. In a study, the impedance was reduced as bacterial concentration enhanced,
which is contrary to normal attachment of entire cells on EIS, a promising electrochemical biosensor.
Bacteria can be detected by capturing electrons on the electrode surface. In EIS electrochemical sensors
with bacteriophage, as a probe, are used to detect bacteria, trough catching the bacteria target the
immobilized phages on electrodes, functional groups [17,80]. The main cause of this is the activity of
lytic phages on bacteria, which causes the intracellular content to drop out and decrease the conductivity.
E. coli was easily detected in pure culture media or inoculated samples in a range between 104–107 CFU
mL−1 using this method [81]. Webster et al. extend an impedimetric microelectrode array biosensor
bacteriophage-based for the detection of bacteria. The results have shown that decreased the width
and gap of an electrode and using the working solution with lower relative dielectric permittivity can
enhance the sensitivity of impedimetric biosensors for pathogenic bacteria [82]. Graphene is wonder
materials with superior properties and using graphene a screen-printed graphene electrode (SPE) for
the detection of S. arlettae. Specific lytic phage against S. arlettae was immobilized on the sensor surface
for quantitative analysis of the bacterial cells and capturing bacteria using EIS biosensor. Accordingly,
the increase in the concentration of bacteria (2–2 × 106 CFU/mL) leads to an increased quantity of
charge transfer resistance (Rct). The limit of detection was defined as around 2 CFU/mL [83].

7. Benefits and Challenges

In these techniques, phages are widely used as bio-probes to detect pathogens. Phages are specific
for host bacteria and have different characteristics, including that they are easy to amplify and cheap to
produce, are resistant to temperature and pH-degradation, as well as organic solvents [74–77]. Moreover,
cloning of engineered phage, derived from phage display libraries, make it able to develop new phages
with on demand binding unites on their surfaces. This makes the phages a very promising candidate for
biosensor applications [13]. Optimization of phage size, expression of binding units on phage’s surface for
specific binding to bacteria, are of the main troubleshooting in development of new phage-based biosensors.

8. Conclusions and Remarks

Biosensors have already demonstrated huge potential in many fields, including detection of
viruses and diseases in patients, as well as in the identification of food pathogens. Many of these
devices are still at laboratories’ experimental bases and translation to the commercial product has been
slow. The main problem, includes a signal-to-noise ratio, caused by the separation of signals from
bacteria, due to the unwanted signal “noise” from the samples. Therefore, sensitivity and repeatability
are the major problems in the biosensors. High specificity is one of the main features of biosensors in
diagnosis assisted by sensitivity, without spending time for the pre-enrichment phase.

Here, a summary of bacteriophage-based bio-probes and their protein receptors are discussed.
At the same specificity of the antibodies and nucleic acid, the phage probes are strong, resistant and
cost-effective. Recent efforts have led to advances in methods in which phage, based on its chemical
properties, is positioned on the surface of the sensor and provides a consistent and stable surface that
results in a widespread diagnosis. Although, phage-based and RBP-based systems have improved
food quality control, it is still an emerging system. Significant advances have been made in this area
and there is a clear and promising future.

Finally advances in cutting edge R and D on nanomaterials and smart materials, including
recent work on graphene-based biosensors [84,85], will speed-up development and translate to
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commercialization. The current situation with Coronavirus is a warning to all on how important of
fast and reliable detection of viruses in reducing mortality.
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