26 research outputs found

    Nutrient addition increases grassland sensitivity to droughts

    Get PDF
    Grasslands worldwide are expected to experience an increase in extreme events such asdrought, along with simultaneous increases in mineral nutrient inputs as a result of human industrialactivities. These changes are likely to interact because elevated nutrient inputs may alter plantdiversity and increase the sensitivity to droughts. Dividing a system?s sensitivity to drought intoresistance to change during the drought and rate of recovery after the drought generates insights intodifferent dimensions of the system?s resilience in the face of drought. Here, we examine the effects ofexperimental nutrient fertilization and the resulting diversity loss on the resistance to and recoveryfrom severe regional droughts. We do this at 13 North American sites spanning gradients of aridity, 5annual grasslands in California and 8 perennial grasslands in the Great Plains. We measured rate ofresistance as the change in annual aboveground biomass (ANPP) per unit change in growing seasonprecipitation as conditions declined from normal to drought. We measured recovery as the change inANPP during the post drought period and the return to normal precipitation. Resistance and recoverydid not vary across the 400 mm range of mean growing season precipitation spanned by our sites inthe Great Plains. However, chronic nutrient fertilization in the Great Plains reduced drought resistanceand increased drought recovery. In the California annual grasslands, arid sites had a greater recoverypost-drought than mesic sites, and nutrient addition had no consistent effects on resistance orrecovery. Across all study sites, we found that pre-drought species richness in natural grasslands wasnot consistently associated with rates of resistance to or recovery from the drought, in contrast toearlier findings from experimentally assembled grassland communities. Taken together, these resultssuggest that human-induced eutrophication may destabilize grassland primary production, but theeffects of this may vary across regions and flora, especially between perennial and annual-dominatedgrasslands.Fil: Bharath, Siddharth. University of Minnesota; Estados UnidosFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Biederman, Lori A.. owa State University; Estados UnidosFil: Blumenthal, Dana M.. State University of Colorado - Fort Collins; Estados UnidosFil: Fay, Philip A.. United States Department of Agriculture; Estados UnidosFil: Gherardi, Laureano. Arizona State University; Estados UnidosFil: Knops, Johannes M. H.. United States Department of Agriculture; Estados UnidosFil: Leakey, Andrew D. B.. State University of Colorado - Fort Collins; Estados UnidosFil: Yahdjian, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Seabloom, Eric. University of Minnesota; Estados Unido

    Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide

    Get PDF
    Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non–nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.DATA AVAILABILITY : Plant, PAR, climate, and soil nitrogen data have been deposited in the Environmental Data Initiative (EDI) repository (https://portal.edirepository.org/nis/mapbrowse?packageid=edi.838.1) (83). Source data are provided with this paper.This work was generated using data from the Nutrient Network (https://nutnet.org/) experiment, funded at the site scale by individual researchers. Coordination and data management were supported by funding to E.T.B. and E.W.S. from the NSF Research Coordination Network (NSF-DEB-1042132) and Long-Term Ecological Research (NSF-DEB-1234162 to Cedar Creek Long-Term Ecological Research) programs, and the Institute on the Environment (DG-0001-13). We also thank the Minnesota Supercomputer Institute for hosting project data and the Institute of the Environment for hosting Network meetings. P.M.T. was supported by an Argentine Research Council fellowship (Consejo Nacional de Investigaciones Científicas y Técnicas) and the Australian Endeavour Programme.https://www.pnas.orghj2022Mammal Research InstituteZoology and Entomolog

    Legacies of precipitation fluctuations on primary production: Theory and data synthesis

    No full text
    Variability of above-ground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space (based on multiyear averages for different locations) than through time (based on year-to-year change at single locations). Here, we propose a theory of controls of ANPP based on four hypotheses about legacies of wet and dry years that explains space versus time differences in ANPP–precipitation relationships. We tested the hypotheses using 16 long-term series of ANPP. We found that legacies revealed by the association of current- versus previous-year conditions through the temporal series occur across all ecosystem types from deserts to mesic grasslands. Therefore, previous-year precipitation and ANPP control a significant fraction of current-year production. We developed unified models for the controls of ANPP through space and time. The relative importance of current-versus previous-year precipitation changes along a gradient of mean annual precipitation with the importance of current-year PPT decreasing, whereas the importance of previous-year PPT remains constant as mean annual precipitation increases. Finally, our results suggest that ANPP will respond to climate-change-driven alterations in water availability and, more importantly, that the magnitude of the response will increase with time.Fil: Sala, Osvaldo Esteban. Arizona State University; Estados UnidosFil: Gherardi, Laureano A.. Arizona State University; Estados UnidosFil: Reichman, Lara. Arizona State University; Estados UnidosFil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; ArgentinaFil: Peters, Debra. Department of Agriculture-Agricultural Research Service; Estados Unido

    Legacies of precipitation fluctuations on primary production: Theory and data synthesis

    Get PDF
    Variability of above-ground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space (based on multiyear averages for different locations) than through time (based on year-to-year change at single locations). Here, we propose a theory of controls of ANPP based on four hypotheses about legacies of wet and dry years that explains space versus time differences in ANPP–precipitation relationships. We tested the hypotheses using 16 long-term series of ANPP. We found that legacies revealed by the association of current- versus previous-year conditions through the temporal series occur across all ecosystem types from deserts to mesic grasslands. Therefore, previous-year precipitation and ANPP control a significant fraction of current-year production. We developed unified models for the controls of ANPP through space and time. The relative importance of current-versus previous-year precipitation changes along a gradient of mean annual precipitation with the importance of current-year PPT decreasing, whereas the importance of previous-year PPT remains constant as mean annual precipitation increases. Finally, our results suggest that ANPP will respond to climate-change-driven alterations in water availability and, more importantly, that the magnitude of the response will increase with time.Fil: Sala, Osvaldo Esteban. Arizona State University; Estados UnidosFil: Gherardi, Laureano A.. Arizona State University; Estados UnidosFil: Reichman, Lara. Arizona State University; Estados UnidosFil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; ArgentinaFil: Peters, Debra. Department of Agriculture-Agricultural Research Service; Estados Unido

    Connecting people and ideas from around the world: global innovation platforms for next-generation ecology and beyond

    Get PDF
    We present a case for using Global Community Innovation Platforms (GCIPs), an approach to improve innovation and knowledge exchange in international scientific communities through a common and open online infrastructure. We highlight the value of GCIPs by focusing on recent efforts targeting the ecological sciences, where GCIPs are of high relevance given the urgent need for interdisciplinary, geographical, and cross-sector collaboration to cope with growing challenges to the environment as well as the scientific community itself. Amidst the emergence of new international institutions, organizations, and meetings, GCIPs provide a stable international infrastructure for rapid and long-term coordination that can be accessed by any individual. This accessibility can be especially important for researchers early in their careers. Recent examples of early-career GCIPs complement an array of existing options for early-career scientists to improve skill sets, increase academic and social impact, and broaden career opportunities. We provide a number of examples of existing early-career initiatives that incorporate elements from the GCIPs approach, and highlight an in-depth case study from the ecological sciences: the International Network of Next-Generation Ecologists (INNGE), initiated in 2010 with support from the International Association for Ecology and 20 member institutions from six continents

    Electromagnetically induced transparency: Optics in coherent media

    Get PDF
    Coherent preparation by laser light of quantum states of atoms and molecules can lead to quantum interference in the amplitudes of optical transitions. In this way the optical properties of a medium can be dramatically modified, leading to electromagnetically induced transparency and related effects, which have placed gas-phase systems at the center of recent advances in the development of media with radically new optical properties. This article reviews these advances and the new possibilities they offer for nonlinear optics and quantum information science. As a basis for the theory of electromagnetically induced transparency the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser. They then discuss pulse propagation and the adiabatic evolution of field-coupled states and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments. The extension of these concepts to very weak optical fields in the few-photon limit is then examined. The review concludes with a discussion of future prospects and potential new applications

    Supercritical fluid extraction-capillary gas chromatography: on-line coupling with a programmed temperature vaporizer

    Get PDF
    A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative transfer of solutes to the seperation column. The problems caused by impurities in the extraction fluid in on-line SFE-GC are discussed. Simple methods are described for the purification of commercially available carbon dioxide. The trapping efficiency of the PTV injector is studied. Applications of the SFE-PTV-GC system are given for the analysis of polymer anti-degradants, polar compounds, and samples with environmental relevance
    corecore