30 research outputs found

    Conservative approach in the management o fisolated penetrating liver trauma

    Get PDF
    No Abstract

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses

    Get PDF
    Intrinsic antioxidant defenses are important for neuronal longevity. We found that in rat neurons, synaptic activity, acting via NMDA receptor (NMDAR) signaling, boosted antioxidant defenses by making changes to the thioredoxin-peroxiredoxin (Prx) system. Synaptic activity enhanced thioredoxin activity, facilitated the reduction of overoxidized Prxs and promoted resistance to oxidative stress. Resistance was mediated by coordinated transcriptional changes; synaptic NMDAR activity inactivated a previously unknown Forkhead box O target gene, the thioredoxin inhibitor Txnip. Conversely, NMDAR blockade upregulated Txnip in vivo and in vitro, where it bound thioredoxin and promoted vulnerability to oxidative damage. Synaptic activity also upregulated the Prx reactivating genes Sesn2 (sestrin 2) and Srxn1 (sulfiredoxin), via C/EBPβ and AP-1, respectively. Mimicking these expression changes was sufficient to strengthen antioxidant defenses. Trans-synaptic stimulation of synaptic NMDARs was crucial for boosting antioxidant defenses; chronic bath activation of all (synaptic and extrasynaptic) NMDARs induced no antioxidative effects. Thus, synaptic NMDAR activity may influence the progression of pathological processes associated with oxidative damage

    Adaptive dosing and platinum-DNA adduct formation in children receiving high-dose carboplatin for the treatment of solid tumours

    Get PDF
    A pharmacokinetic–pharmacodynamic study was carried out to investigate the feasibility and potential importance of therapeutic monitoring following high-dose carboplatin treatment in children. High-dose carboplatin was administered over 3 or 5 days, with the initial dose based on renal function, to achieve target area under the plasma concentration–time curve (AUC) values of 21 or 20mgml−1.min, respectively. Dose adjustment was carried out based on observed individual daily AUC values, to obtain the defined target exposures. Platinum–DNA adduct levels were determined in peripheral blood leucocytes and toxicity data were obtained. Twenty-eight children were studied. Based on observed AUC values, carboplatin dose adjustment was performed in 75% (21 out of 28) patients. Therapeutic monitoring resulted in the achievement of carboplatin exposures within 80–126% of target AUC values, as compared to estimated exposures of 65–213% of target values without dose adjustment. The carboplatin AUC predicted with no dose modification was positively correlated with pretreatment glomerular filtration rate (GFR) values. Higher GFR values were observed in those patients who would have experienced AUC values >25% above the target AUC than those patients attaining AUC values >25% below the target AUC, following renal function-based dosing. Platinum–DNA adduct levels correlated with observed AUC values on day 1 of carboplatin and increased over a 5-day course of treatment. Real-time monitoring of carboplatin pharmacokinetics with adaptive dosing is both feasible and necessary for the attainment of consistent AUC values in children receiving high-dose carboplatin treatment. Pharmacodynamic data suggest a strong correlation between carboplatin pharmacokinetics and the drug–target interaction
    corecore