24 research outputs found

    High resolution simulation of the South Asian monsoon using a variable resolution global climate model

    Get PDF
    International audienceThis study examines the feasibility of using a variable resolution global general circulation model (GCM), with telescopic zooming and enhanced resolution (~35 km) over South Asia, to better understand regional aspects of the South Asian monsoon rainfall distribution and the interactions between monsoon circulation and precipitation. For this purpose, two sets of ten member realizations are produced with and without zooming using the LMDZ (Laboratoire Meteorologie Dynamique and Z stands for zoom) GCM. The simulations without zoom correspond to a uniform 1° × 1° grid with the same total number of grid points as in the zoom version. So the grid of the zoomed simulations is finer inside the region of interest but coarser outside. The use of these finer and coarser resolution ensemble members allows us to examine the impact of resolution on the overall quality of the simulated regional monsoon fields. It is found that the monsoon simulation with high-resolution zooming greatly improves the representation of the southwesterly monsoon flow and the heavy precipitation along the narrow orography of the Western Ghats, the northeastern mountain slopes and northern Bay of Bengal (BOB). A realistic Monsoon Trough (MT) is also noticed in the zoomed simulation, together with remarkable improvements in representing the associated precipitation and circulation features, as well as the large-scale organization of meso-scale convective systems over the MT region. Additionally, a more reasonable simulation of the monsoon synoptic disturbances (lows and disturbances) along the MT is noted in the high-resolution zoomed simulation. On the other hand, the no-zoom version has limitations in capturing the depressions and their movement, so that the MT zone is relatively dry in this case. Overall, the results from this work demonstrate the usefulness of the high-resolution variable resolution LMDZ model in realistically capturing the interactions among the monsoon large-scale dynamics, the synoptic systems and the meso-scale convective systems, which are essential elements of the South Asian monsoon system

    A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes

    Get PDF
    Since 70% of global forests are managed and forests impact the global carbon cycle and the energy exchange with the overlying atmosphere, forest management has the potential to mitigate climate change. Yet, none of the land surface models used in Earth system models, and therefore none of today’s predictions of future climate, account for the interactions between climate and forest management. We addressed this gap in modelling capability by developing and parametrizing a version of the land surface model ORCHIDEE to simulate the biogeochemical and biophysical effects of forest management. The most significant changes between the new branch called ORCHIDEE-CAN (SVN r2290) and the trunk version of ORCHIDEE (SVN r2243) are the allometric-based allocation of carbon to leaf, root, wood, fruit and reserve pools; the transmittance, absorbance and reflectance of radiation within the canopy; and the vertical discretisation of the energy budget calculations. In addition, conceptual changes were introduced towards a better process representation for the interaction of radiation with snow, the hydraulic architecture of plants, the representation of forest management and a numerical solution for the photosynthesis formalism of Farquhar, von Caemmerer and Berry. For consistency reasons, these changes were extensively linked throughout the code. Parametrization was revisited after introducing twelve new parameter sets that represent specific tree species or genera rather than a group of often distantly related or even unrelated species, as is the case in widely used plant functional types. Performance of the new model was compared against the trunk and validated against independent spatially explicit data for basal area, tree height, canopy strucure, GPP, albedo and evapotranspiration over Europe. For all tested variables ORCHIDEE-CAN outperformed the trunk regarding its ability to reproduce large-scale spatial patterns as well as their inter-annual variability over Europe. Depending on the data stream, ORCHIDEE-CAN had a 67% to 92% chance to reproduce the spatial and temporal variability of the validation data.JRC.H.5-Land Resources Managemen

    Tropical cyclones in global high-resolution simulations using the IPSL model

    No full text
    International audienceAbstract Despite many years of extensive research, the evolution of Tropical Cyclone (TC) activity in our changing climate remains uncertain. This is partly because the answer to that question relies primarily on climate simulations with horizontal resolutions of a few tens of kilometers. Such simulations have only recently become accessible for most modeling centers, including the Institut Pierre-Simon Laplace (IPSL). Using recent numerical developments in the IPSL model, we perform a series of historical atmospheric-only simulations that follow the HighResMIP protocol. We assess the impact of increasing the resolution from ∌ 200{\sim }\, 200 ∌ 200 to 25 km on TC activity. In agreement with previous work, we find a systematic improvement of TC activity with increasing resolution with respect to the observations. However, a clear signature of TC frequencies convergence with resolution is still lacking. Cyclogenesis geographical distributions also improve at the scale of individual basins. This is particularly true of the North Atlantic, where the agreement with the observed distribution is impressive at 25 km. In agreement with the observations, TC activity correlates with the large-scale environment and ENSO in that basin. By contrast, TC frequencies remain too small in the Western North Pacific at 25 km, where significant biases of humidity and vorticity are found compared to the reanalysis. Despite the few minor weaknesses we identified, our results demonstrate that the IPSL model is a suitable tool for studying TCs on climate time scales. This work thus opens the way for further studies contributing to our understanding of TC climatology

    Influence of hillslope flow on hydroclimatic evolution under climate change

    No full text
    International audienceWe analyzed the influence of hillslope flow on projections of climate change by comparing two transient climate simulations with the IPSL climate model between 1980 and 2100. Hillslope flow induces a reorganization and increment of soil moisture (+10%), which increases evapotranspiration (+4%) and precipitation (+1%) and decreases total runoff (−3%) and air temperature (−0.1 °C) on an annual average over land for 1980–2010 when compared to simulation not representing hillslope flow. These changes in land/ atmosphere fluxes are not homogenous and depend on regional climate and surface conditions. Hillslope flow also influences climate change projections. On average over land, it amplifies the positive trend of soil moisture (+23%), evapotranspiration (+50%), and precipitation (+7%) and slightly attenuates global warming (−1%), especially for daily maximum air temperature. The role of hillslope flow in supporting surface/atmosphere fluxes is more evident at a regional scale. Where precipitation is projected to decrease, hillslope flow is shown to attenuate the related declines in evapotranspiration, precipitation, and total runoff, regardless of aridityconditions and mean air temperature. Where precipitation is projected to increase, hillslope flow amplifies evapotranspiration enhancement but attenuates the increase in precipitation and total runoff. Warming is generally attenuated, especially in semiarid and cold areas, and humid and warm/temperate regions, but the signal is weak. These results demonstrate the role of hillslope flow in enhancing water and energy fluxesbetween the surface and the atmosphere. They also suggest that including hillslope flow in climate models would weaken the projected intensification of hydrological extreme events

    Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production

    No full text
    International audienceNitrogen is an essential element controlling ecosystem carbon (C) productivity and its response to climate change and atmospheric [CO 2 ] increase. This study presents the evaluation-focussing on gross primary production (GPP)-of a new version of the ORCHIDEE model that gathers the representation of the nitrogen cycle and of its interactions with the carbon cycle from the OCN model and the most recent developments from the ORCHIDEE trunk version. We quantify the model skills at 78 FLUXNET sites by simulating the observed mean seasonal cycle, daily mean flux variations, and annual mean average GPP flux for grasslands and forests. Accounting for carbon-nitrogen interactions does not substantially change the main skills of OR-CHIDEE, except for the site-to-site annual mean GPP variations , for which the version with carbon-nitrogen interactions is in better agreement with observations. However, the simulated GPP response to idealised [CO 2 ] enrichment simulations is highly sensitive to whether or not carbon-nitrogen interactions are accounted for. Doubling of the atmospheric [CO 2 ] induces an increase in the GPP, but the site-averaged GPP response to a CO 2 increase projected by the model version with carbon-nitrogen interactions is half of the increase projected by the version without carbon-nitrogen interactions. This model's differentiated response has important consequences for the transpiration rate, which is on average 50 mm yr −1 lower with the version with carbon-nitrogen interactions. Simulated annual GPP for northern, tropical and southern latitudes shows good agreement with the observation-based MTE-GPP (model tree ensemble gross primary production) product for present-day conditions. An attribution experiment making use of this new version of ORCHIDEE for the time period 1860-2016 suggests that global GPP has increased by 50 %, the main driver being the enrichment of land in reactive nitrogen (through deposition and fertilisa-tion), followed by the [CO 2 ] increase. Based on our factorial experiment and sensitivity analysis , we conclude that if carbon-nitrogen interactions are accounted for, the functional responses of ORCHIDEE r4999 better agree with the current understanding of pho-tosynthesis than when the carbon-nitrogen interactions are not accounted for and that carbon-nitrogen interactions are essential in understanding global terrestrial ecosystem productivity

    Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters

    Get PDF
    International audienceA new version of the biogenic volatile organic compounds (BVOCs) emission scheme has been developed in the global vegetation model ORCHIDEE (Organizing Carbon and Hydrology in Dynamic EcosystEm), which includes an extended list of biogenic emitted compounds, updated emission factors (EFs), a dependency on light for almost all compounds and a multi-layer radiation scheme. Over the 2000–2009 period, using this model, we estimate mean global emissions of 465 Tg C yr−1 for isoprene, 107.5 Tg C yr−1 for monoterpenes, 38 Tg C yr−1 for methanol, 25 Tg C yr−1 for acetone and 24 Tg C yr−1 for sesquiterpenes. The model results are compared to state-of-the-art emission budgets, showing that the ORCHIDEE emissions are within the range of published estimates. ORCHIDEE BVOC emissions are compared to the estimates of the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which is largely used throughout the biogenic emissions and atmospheric chemistry community. Our results show that global emission budgets of the two models are, in general, in good agreement. ORCHIDEE emissions are 8 % higher for isoprene, 8 % lower for methanol, 17 % higher for acetone, 18 % higher for monoterpenes and 39 % higher for sesquiterpenes, compared to the MEGAN estimates. At the regional scale, the largest differences between ORCHIDEE and MEGAN are highlighted for isoprene in northern temperate regions, where ORCHIDEE emissions are higher by 21 Tg C yr−1, and for monoterpenes, where they are higher by 4.4 and 10.2 Tg C yr−1 in northern and southern tropical regions compared to MEGAN. The geographical differences between the two models are mainly associated with different EF and plant functional type (PFT) distributions, while differences in the seasonal cycle are mostly driven by differences in the leaf area index (LAI). Sensitivity tests are carried out for both models to explore the response to key variables or parameters such as LAI and light-dependent fraction (LDF). The ORCHIDEE and MEGAN emissions are differently affected by LAI changes, with a response highly depending on the compound considered. Scaling the LAI by a factor of 0.5 and 1.5 changes the isoprene global emission by −21 and +8 % for ORCHIDEE and −15 and +7 % for MEGAN, and affects the global emissions of monoterpenes by −43 and +40 % for ORCHIDEE and −11 and +3 % for MEGAN. Performing a further sensitivity test, forcing ORCHIDEE with the MODIS LAI, confirms the high sensitivity of the ORCHIDEE emission module to LAI variation. We find that MEGAN is more sensitive to variation in the LDF parameter than ORCHIDEE. Our results highlight the importance and the need to further explore the BVOC emission estimate variability and the potential for using models to investigate the estimated uncertainties

    Multi-variable evaluation of land surface processes in forced and coupled modes reveals new error sources to the simulated water cycle in the IPSL climate model

    No full text
    International audienceAbstract. Evaluating land surface models (LSMs) using available observations is important to understand the potential and limitations of current Earth system models in simulating water- and carbon-related variables. To reveal the error sources of a land surface model (LSM), four essential climate variables have been evaluated in this paper (i.e., surface soil moisture, evapotranspiration, leaf area index, and surface albedo) via simulations with IPSL LSM ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems), particularly focusing on the difference between (i) forced simulations with atmospheric forcing data (WATCH-Forcing-DATA-ERA-Interim: WFDEI) and (ii) coupled simulations with the IPSL atmospheric general circulation model. Results from statistical evaluation using satellite- and ground-based reference data show that ORCHIDEE is well equipped to represent spatiotemporal patterns of all variables in general. However, further analysis against various landscape/meteorological factors (e.g., plant functional type, slope, precipitation, and irrigation) suggests potential uncertainty relating to freezing/snowmelt, temperate plant phenology, irrigation, as well as contrasted responses between forced and coupled mode simulations. The biases in the simulated variables are amplified in coupled mode via surface–atmosphere interactions, indicating a strong link between irrigation–precipitation and a relatively complex link between precipitation–evapotranspiration that reflects the hydrometeorological regime of the region (energy-limited or water-limited) and snow-albedo feedback in mountainous and boreal regions. The different results between forced and coupled modes imply the importance of model evaluation under both modes to isolate potential sources of uncertainty in the model

    Multivariable evaluation of land surface processes in forced and coupled modes reveals new error sources to the simulated water cycle in the IPSL (Institute Pierre Simon Laplace) climate model

    No full text
    International audienceEvaluating land surface models (LSMs) using available observations is important for understanding the potential and limitations of current Earth system models in simulating water- and carbon-related variables. To reveal the error sources of a LSM, five essential climate variables have been evaluated in this paper (i.e., surface soil moisture, evapotranspiration, leaf area index, surface albedo, and precipitation) via simulations with the IPSL (Institute Pierre Simon Laplace) LSM ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) model, particularly focusing on the difference between (i) forced simulations with atmospheric forcing data (WATCH Forcing Data ERA-Interim – WFDEI) and (ii) coupled simulations with the IPSL atmospheric general circulation model. Results from statistical evaluation, using satellite- and ground-based reference data, show that ORCHIDEE is well equipped to represent spatiotemporal patterns of all variables in general. However, further analysis against various landscape and meteorological factors (e.g., plant functional type, slope, precipitation, and irrigation) suggests potential uncertainty relating to freezing and/or snowmelt, temperate plant phenology, irrigation, and contrasted responses between forced and coupled mode simulations. The biases in the simulated variables are amplified in the coupled mode via surface–atmosphere interactions, indicating a strong link between irrigation–precipitation and a relatively complex link between precipitation–evapotranspiration that reflects the hydrometeorological regime of the region (energy limited or water limited) and snow albedo feedback in mountainous and boreal regions. The different results between forced and coupled modes imply the importance of model evaluation under both modes to isolate potential sources of uncertainty in the model
    corecore