7 research outputs found

    Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the Red Sea

    Get PDF
    AbstractThe Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.</jats:p

    On the efficiency of the hybrid and the exact second-order sampling formulations of the EnKF: a reality-inspired 3-D test case for estimating biodegradation rates of chlorinated hydrocarbons at the port of Rotterdam

    No full text
    This study considers the assimilation problem of subsurface contaminants at the port of Rotterdam in the Netherlands. It involves the estimation of solute concentrations and biodegradation rates of four different chlorinated solvents. We focus on assessing the efficiency of an adaptive hybrid ensemble Kalman filter and optimal interpolation (EnKF-OI) and the exact second-order sampling formulation (EnKFESOS) for mitigating the undersampling of the estimation and observation errors covariances, respectively. A multi-dimensional and multi-species reactive transport model is coupled to simulate the migration of contaminants within a Pleistocene aquifer layer located around 25 m below mean sea level. The biodegradation chain of chlorinated hydrocarbons starting from tetrachloroethene and ending with vinyl chloride is modeled under anaerobic environmental conditions for 5 decades. Yearly pseudo-concentration data are used to condition the forecast concentration and degradation rates in the presence of model and observational errors. Assimilation results demonstrate the robustness of the hybrid EnKF-OI, for accurately calibrating the uncertain biodegradation rates. When implemented serially, the adaptive hybrid EnKF-OI scheme efficiently adjusts the weights of the involved covariances for each individual measurement. The EnKFESOS is shown to maintain the parameter ensemble spread much better leading to more robust estimates of the states and parameters. On average, a well tuned hybrid EnKF-OI and the EnKFESOS respectively suggest around 48 and 21 % improved concentration estimates, as well as around 70 and 23 % improved anaerobic degradation rates, over the standard EnKF. Incorporating large uncertainties in the flow model degrades the accuracy of the estimates of all schemes. Given that the performance of the hybrid EnKF-OI depends on the quality of the background statistics, satisfactory results were obtained only when the uncertainty imposed on the background information is relatively moderate

    Cohesive cracking in negative geometries

    No full text
    An isolated cohesive crack loaded by a central concentrated load and a cohesive edge crack loaded by concentrated loading at the crack mouth are examined. In the cohesive zones of both cases, rectangular softening and linear softening are investigated. A distinct peak load does not occur for these negative geometries. The traction-free crack grows at the instant that the process zone is fully developed. In a negative geometry, in order to maintain traction-free crack propagation, the load ratio must always increase, ensuring that stable crack growth always occurs.Peer reviewe

    Fracture of warm S2 columnar freshwater ice

    No full text
    Large scale laboratory experiments on size and rate effects on the fracture of warm columnar freshwater ice have been conducted with floating edge-cracked rectangular plates loaded at the crack mouth. The largest test plate size had dimensions of 19.5m x 36m. The overall crack-parallel dimension covered a size range of 1 : 39 , possibly the largest for ice tested under laboratory conditions. The loading rates applied led to test durations from fewer than 2 seconds to more than 1000 seconds, leading to an elastic response at the highest rates to a viscoelastic response at the lower rates. Methods for both the linear elastic fracture mechanics (LEFM) and a non-linear viscoelastic fictitious crack model (VFCM) were derived to analyze the data and calculate values for the apparent fracture toughness, crack opening displacement, stress-separation curve, fracture energy, and size of the process zone near a crack tip. Issues of notch sensitivity and minimum size requirements for polycrystalline homogeneity were addressed. Both size and rate effects were observed, as well as how these two factors are interrelated in the fracture of columnar freshwater ice. There was a size effect at low rates but no size effect at high rates. There was a rate effect for the larger test sizes but a weaker or no rate effect for the smallest test size. (c) 2020 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )Peer reviewe

    Fracture energy of columnar freshwater ice

    No full text
    Funding Information: This work was funded though the Finland Distinguished Professor programme ”Scaling of Ice Strength: Measurements and Modeling”, and through the ARAJ research project, both funded by Business Finland and the industrial partners Aker Arctic Technology, Arctech Helsinki Shipyard, Arctia Shipping, ABB Marine, Finnish Transport Agency, Suomen Hyȵtytuuli Oy, and Ponvia Oy. This financial support is gratefully acknowledged. The second author (J.P.D.) thanks Business Finland for support by the FiDiPro Professorship from Aalto University, and the sabbatical support from Aalto University, which collectively supported an annual visit 2015–2016, and summer visits 2017–2019. Publisher Copyright: © 2021 The Author(s)This work investigates the influence of loading type, loading rate, and test size on the fracture energy of columnar freshwater S2 ice. The ice sheet in the Ice tank at Aalto University was very warm (above -0.5 ∘C) and thick (0.34<h<0.41 m). A program of nineteen mode I fracture tests using deeply cracked edge-cracked rectangular plates of various sizes (size range 1:39), loading types, and loading rates were carried out. Fourteen displacement-controlled tests (DC) were loaded monotonically to fracture, and five load-controlled tests (LC) were conducted with creep/cyclic-recovery and monotonic loading to fracture. Different methods for computing the fracture energy were applied and compared. The apparent fracture energy at crack growth initiation was obtained via Rice's J-integral expression (JQ) modified to be applicable to the special case of a deeply cracked edge-cracked plate as well as via a viscoelastic fictitious crack analysis (GVFCM). The work-of-fracture (Wf) was also evaluated. Both JQ and Wf weremeasured from the load-displacement record at the crack mouth. GVFCM was obtained from the back-calculated stress-separation (σ−δ) relation within the fracture process zone. A rather good agreement was obtained between GVFCM and JQ, especially for the large specimens. JQ and Wf exhibited interrelated size and rate effects. The Wf/JQ values for the DC tests were affected by rate and confined to a narrow range of 1 to 3. The creep-recovery loading did not affect the JQ values but led to an increase in the Wf and Wf/JQ values for most of the LC tests.Peer reviewe

    Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the Red Sea

    No full text
    The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more. © 2021 American Meteorological Societ
    corecore