59 research outputs found

    Direct comparison between potential landscape and local density of states in a disordered two-dimensional electron system

    Full text link
    The local density of states (LDOS) of the adsorbate induced two-dimensional electron system (2DES) on n-InAs(110) is studied by low-temperature scanning tunneling spectroscopy. The LDOS exhibits irregular structures with fluctuation lengths decreasing with increasing energy. Fourier transformation reveals that the k-values of the unperturbed 2DES dominate the LDOS, but additional lower k-values contribute significantly. To clarify the origin of the additional k-space intensity, we measure the potential landscape of the same 2DES area with the help of the tip induced quantum dot. This allows to calculate the expected LDOS from the single particle Schroedinger equation and to directly compare it with the measured one. Reasonable correspondance between calculated and measured LDOS is found.Comment: 7 pages, 4 figures, submitted to PR

    Electronic transport through domain walls in ferromagnetic nanowires: Co-existence of adiabatic and non-adiabatic spin dynamics

    Full text link
    We study the effect of a domain wall on the electronic transport in ferromagnetic quantum wires. Due to the transverse confinement, conduction channels arise. In the presence of a domain wall, spin up and spin down electrons in these channels become coupled. For very short domain walls or at high longitudinal kinetic energy, this coupling is weak, leads to very few spin flips, and a perturbative treatment is possible. For very long domain wall structures, the spin follows adiabatically the local magnetization orientation, suppressing the effect of the domain wall on the total transmission, but reversing the spin of the electrons. In the intermediate regime, we numerically investigate the spin-dependent transport behavior for different shapes of the domain wall. We find that the knowledge of the precise shape of the domain wall is not crucial for determining the qualitative behavior. For parameters appropriate for experiments, electrons with low longitudinal energy are transmitted adiabatically while the electrons at high longitudinal energy are essentially unaffected by the domain wall. Taking this co-existence of different regimes into account is important for the understanding of recent experiments.Comment: 10 pages, 6 figure

    Regional Imprints of Changes in the Atlantic Meridional Overturning Circulation in the Eddy-rich Ocean Model VIKING20X

    Get PDF
    A hierarchy of global 1/4° (ORCA025) and Atlantic Ocean 1/20° nested (VIKING20X) ocean/sea-ice models is described. It is shown that the eddy-rich configurations performed in hindcasts of the past 50–60 years under CORE and JRA55-do atmospheric forcings realistically simulate the large-scale horizontal circulation, the distribution of the mesoscale, overflow and convective processes, and the representation of regional current systems in the North and South Atlantic. The representation, and in particular the long-term temporal evolution, of the Atlantic Meridional Overturning Circulation (AMOC) strongly depends on numerical choices for the application of freshwater fluxes. The interannual variability of the AMOC instead is highly correlated among the model experiments and also with observations, including the 2010 minimum observed by RAPID at 26.5° N pointing at a dominant role of the forcing. Regional observations in western boundary current systems at 53° N, 26.5° N and 11° S are explored in respect to their ability to represent the AMOC and to monitor the temporal evolution of the AMOC. Apart from the basin-scale measurements at 26.5° N, it is shown that in particular the outflow of North Atlantic Deepwater at 53° N is a good indicator of the subpolar AMOC trend during the recent decades, if the latter is provided in density coordinates. The good reproduction of observed AMOC and WBC trends in the most reasonable simulations indicate that the eddy-rich VIKING20X is capable in representing realistic forcing-related and ocean-intrinsic trends

    Pregnancy and neonatal outcomes of COVID-19: co-reporting of common outcomes from PAN-COVID and AAP SONPM registries

    Get PDF
    OBJECTIVE: Few large cohort studies have reported data on maternal, fetal, perinatal and neonatal outcomes associated with SARS-CoV-2 infection in pregnancy. We report the outcome of infected pregnancies from a collaboration formed early during the pandemic between the investigators of two registries, the UK and global Pregnancy and Neonatal outcomes in COVID-19 (PAN-COVID) study and the US American Academy of Pediatrics Section on Neonatal Perinatal Medicine (AAP SONPM) National Perinatal COVID-19 Registry. METHODS: This was an analysis of data from the PAN-COVID registry (January 1st to July 25th 2020), which includes pregnancies with suspected or confirmed maternal SARS-CoV-2 infection at any stage in pregnancy, and the AAP SONPM National Perinatal COVID-19 registry (April 4th to August 8th 2020), which includes pregnancies with positive maternal testing for SARS-CoV-2 from 14 days before delivery to 3 days after delivery. The registries collected data on maternal, fetal, perinatal and neonatal outcomes. The PAN-COVID results are presented both overall for pregnancies with suspected or confirmed SARS-CoV-2 infection and separately in those with confirmed infection. RESULTS: We report on 4005 pregnant women with suspected or confirmed SARS-CoV-2 infection (1606 from PAN-COVID and 2399 from AAP SONPM). For obstetric outcomes, in PAN-COVID overall, those with confirmed infection in PAN-COVID and AAP SONPM, respectively, maternal death occurred in 0.5%, 0.5% and 0.2% of cases, early neonatal death in 0.2%, 0.3% and 0.3% of cases and stillbirth in 0.5%, 0.6% and 0.4% of cases. Delivery was pre-term (<37 weeks' gestation) in 12.0% of all women in PAN-COVID, in 16.2% of those women with confirmed infection in PAN-COVID and in 15.7% of women in AAP SONPM. Extremely preterm delivery (< 27 weeks' gestation) occurred in 0.5% of cases in PAN-COVID and 0.3% in AAP SONPM. Neonatal SARS-CoV-2 infection was reported in 0.8% of all deliveries in PAN-COVID, in 2.0% in those with confirmed infection in PAN-COVID and in 1.8% in AAP SONPM; the proportions of neonates tested were 9.5%, 20.7% and 87.2%, respectively. The rates of a SGA neonate were 8.2% in PAN-COVID overall, 9.7% in those with confirmed infection and 9.6% in AAP SONPM. Mean gestational age adjusted birth-weight z-scores were -0.03 in PAN-COVID and -0.18 in AAP SONPM. CONCLUSIONS: The findings from the UK and US registries of pregnancies with SARS-CoV-2 infection were remarkably concordant. Preterm delivery affected a higher proportion of women than expected based on historical and contemporaneous national data. The proportions of pregnancies affected by stillbirth, a small for gestational age infant or early neonatal death were comparable to those in historical and contemporaneous UK and US data. Although maternal death was uncommon, the rate was higher than expected based on UK and US population data, which is likely explained by under-ascertainment of women affected by milder or asymptomatic infection in pregnancy in the PAN-COVID study although not in the AAP SONPM study. The data presented support strong guidance for enhanced precautions to prevent SARS-CoV-2 infection in pregnancy, particularly in the context of increased risks of preterm delivery and maternal mortality, and for priority vaccination of women planning pregnancy. This article is protected by copyright. All rights reserved

    Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons

    Get PDF
    Fundamental interactions induced by lattice vibrations on ultrafast time scales become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the THz frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here, we report on the generation and nonlinear propagation of giant (1 percent) acoustic strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast surface plasmon interferometry. This new technique allows for unambiguous characterization of arbitrary ultrafast acoustic transients. The giant acoustic pulses experience substantial nonlinear reshaping already after a propagation distance of 100 nm in a crystalline gold layer. Excellent agreement with the Korteveg-de Vries model points to future quantitative nonlinear femtosecond THz-ultrasonics at the nano-scale in metals at room temperature

    Silicon isotopes in an EMIC's ocean: Sensitivity to runoff, iron supply, and climate

    Get PDF
    The isotopic composition of Si in biogenic silica (BSi), such as opal buried in the oceans' sediments, has changed over time. Paleorecords suggest that the isotopic composition, described in terms of δ30Si, was generally much lower during glacial times than today. There is consensus that this variability is attributable to differing environmental conditions at the respective time of BSi production and sedimentation. The detailed links between environmental conditions and the isotopic composition of BSi in the sediments remain, however, poorly constrained. In this study, we explore the effects of a suite of offset boundary conditions during the Last Glacial Maximum (LGM) on the isotopic composition of BSi archived in sediments in an Earth System Model of intermediate complexity (EMIC). Our model results suggest that a change in the isotopic composition of Si supply to the glacial ocean is sufficient to explain the observed overall low(er) glacial δ30Si in BSi. All other processes explored trigger model responses of either wrong sign or magnitude or are inconsistent with a recent estimate of bottom water oxygenation in the Atlantic Sector of the Southern Ocean. Caveats, mainly associated with generic uncertainties in today's pelagic biogeochemical modules, remain.publishedVersio

    Theory of magnetization precession induced by a picosecond strain pulse in ferromagnetic semiconductor (Ga,Mn)As

    Full text link
    A theoretical model of the coherent precession of magnetization excited by a picosecond acoustic pulse in a ferromagnetic semiconductor layer of (Ga,Mn)As is developed. The short strain pulse injected into the ferromagnetic layer modifies the magnetocrystalline anisotropy resulting in a tilt of the equilibrium orientation of magnetization and subsequent magnetization precession. We derive a quantitative model of this effect using the Landau-Lifshitz equation for the magnetization that is precessing in the time-dependent effective magnetic field. After developing the general formalism, we then provide a numerical analysis for a certain structure and two typical experimental geometries in which an external magnetic field is applied either along the hard or the easy magnetization axis. As a result we identify three main factors, which determine the precession amplitude: the magnetocrystalline anisotropy of the ferromagnetic layer, its thickness, and the strain pulse parameters

    An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations

    Get PDF
    We present an analysis of annual and seasonal mean characteristics of the Indian Ocean circulation and water masses from 16 global ocean–sea-ice model simulations that follow the Coordinated Ocean-ice Reference Experiments (CORE) interannual protocol (CORE-II). All simulations show a similar large-scale tropical current system, but with differences in the Equatorial Undercurrent. Most CORE-II models simulate the structure of the Cross Equatorial Cell (CEC) in the Indian Ocean. We uncover a previously unidentified secondary pathway of northward cross-equatorial transport along 75 °E, thus complementing the pathway near the Somali Coast. This secondary pathway is most prominent in the models which represent topography realistically, thus suggesting a need for realistic bathymetry in climate models. When probing the water mass structure in the upper ocean, we find that the salinity profiles are closer to observations in geopotential (level) models than in isopycnal models. More generally, we find that biases are model dependent, thus suggesting a grouping into model lineage, formulation of the surface boundary, vertical coordinate and surface salinity restoring. Refinement in model horizontal resolution (one degree versus degree) does not significantly improve simulations, though there are some marginal improvements in the salinity and barrier layer results. The results in turn suggest that a focus on improving physical parameterizations (e.g. boundary layer processes) may offer more near-term advances in Indian Ocean simulations than refined grid resolution

    Interior pathways of the North Atlantic meridional overturning circulation

    Get PDF
    To understand how our global climate will change in response to natural and anthropogenic forcing, it is essential to determine how quickly and by what pathways climate change signals are transported throughout the global ocean, a vast reservoir for heat and carbon dioxide. Labrador Sea Water (LSW), formed by open ocean convection in the subpolar North Atlantic, is a particularly sensitive indicator of climate change on interannual to decadal timescales. Hydrographic observations made anywhere along the western boundary of the North Atlantic reveal a core of LSW at intermediate depths advected southward within the Deep Western Boundary Current (DWBC). These observations have led to the widely held view that the DWBC is the dominant pathway for the export of LSW from its formation site in the northern North Atlantic towards the Equator. Here we show that most of the recently ventilated LSW entering the subtropics follows interior, not DWBC, pathways. The interior pathways are revealed by trajectories of subsurface RAFOS floats released during the period 2003-2005 that recorded once-daily temperature, pressure and acoustically determined position for two years, and by model-simulated 'e-floats' released in the subpolar DWBC. The evidence points to a few specific locations around the Grand Banks where LSW is most often injected into the interior. These results have implications for deep ocean ventilation and suggest that the interior subtropical gyre should not be ignored when considering the Atlantic meridional overturning circulation.Dissertatio
    • …
    corecore