92 research outputs found

    Perturbing parameters to understand cloud contributions to climate change

    Full text link
    The sensitivity of cloud feedbacks to atmospheric model parameters is evaluated using a CAM6 perturbed parameter ensemble (PPE). The CAM6 PPE perturbs 45 parameters across 262 simulations, 206 of which are used here. The spread in total cloud feedback and its six components across the CAM6 PPE are comparable to the spread across the CMIP6 and AMIP ensembles, indicating that parametric uncertainty mirrors structural uncertainty. However, the high-cloud altitude feedback is generally larger in the CAM6 PPE than WCRP assessment, CMIP6, and AMIP values. We evaluate the influence of each of the 45 parameters on the total cloud feedback and each of the six cloud feedback components. We also explore whether the CAM6 PPE can be used to constrain the total cloud feedback, with inconclusive results. Further, we find that despite the large parametric sensitivity of cloud feedbacks in CAM6, a substantial increase in cloud feedbacks from CAM5 to CAM6 is not a result of changes in parameter values. Notably, the CAM6 PPE is run with a more recent version of CAM6 (CAM6.3) than was used for AMIP (CAM6.0), and has a smaller total cloud feedback (0.56 W m−2^{-2} K−1^{-1}) as compared to CAM6.0 (0.81 W m−2^{-2} K−1^{-1}) owing primarily to reductions in low clouds over the tropics and middle latitudes. The work highlights the large sensitivity of cloud feedbacks to both parameter values and structural details in CAM6

    Contrail cirrus supporting areas in model and observations

    Get PDF
    Contrails form and persist dependent on the surrounding moisture, temperature and pressure fields and on fuel and aircraft specific variables. After formation, contrail persistence requires only supersaturation relative to ice. The fractional area in which contrails can form is called potential contrail coverage. We introduce a potential contrail cirrus coverage equivalent to the cloud free supersaturated area. This field, simulated by the ECHAM4 climate model, agrees fairly well with estimates of supersaturation frequency as inferred from aircraft and satellite measurements. In areas where the two potential coverages are different, especially at lower flight levels, potential contrail coverage is not a valid estimate of maximum attainable contrail cirrus coverage. We parameterize both potential coverages consistently with the ECHAM4 cloud cover parameterization. A comparison of the potential contrail coverage with an earlier estimate reveals substantial differences especially at upper height levels in the tropics

    Evaluation of the CAM6 Climate Model Using Cloud Observations at McMurdo Station, Antarctica

    Get PDF
    A comparative analysis between observational data from McMurdo Station, Antarctica and the Community Atmosphere Model version 6 (CAM6) simulation is performed focusing on cloud characteristics and their thermodynamic conditions. Ka-band Zenith Radar (KAZR) and High Spectral Resolution Lidar (HSRL) retrievals are used as the basis of cloud fraction and cloud phase identifications. Radiosondes released at 12-h increments provide atmospheric profiles for evaluating the simulated thermodynamic conditions. Our findings show that the CAM6 simulation consistently overestimates (underestimates) cloud fraction above (below) 3 km in four seasons of a year. Normalized by total in-cloud samples, ice and mixed phase occurrence frequencies are underestimated and liquid phase frequency is overestimated by the model at cloud fractions above 0.6, while at cloud fractions below 0.6 ice phase frequency is overestimated and liquid-containing phase frequency is underestimated by the model. The cloud fraction biases are closely associated with concurrent biases in relative humidity (RH), that is, high (low) RH biases above (below) 2 km. Frequencies of correctly simulating ice and liquid-containing phase increase when the absolute biases of RH decrease. Cloud fraction biases also show a positive correlation with RH biases. Water vapor mixing ratio biases are the primary contributor to RH biases, and hence, likely a key factor controlling the cloud biases. This diagnosis of the evident shortfalls of representations of cloud characteristics in CAM6 simulation at McMurdo Station brings new insight in improving the governing model physics therein

    Bringing the System Together: Coupling and Complexity

    Full text link

    Ice and Supercooled Liquid Water Distributions Over the Southern Ocean Based on In Situ Observations and Climate Model Simulations

    Get PDF
    Three climate models are evaluated using in situ airborne observations from the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) campaign. The evaluation targets cloud phases, microphysical properties, thermodynamic conditions, and aerosol indirect effects from −40°C to 0°C. Compared with 580-s averaged observations (i.e., 100 km horizontal scale), the Community Atmosphere Model version 6 (CAM6) shows the most similar result for cloud phase frequency distribution and allows more liquid-containing clouds below −10°C compared with its predecessor—CAM5. The Energy Exascale Earth System Model (E3SM) underestimates (overestimates) ice phase frequencies below (above) −20°C. CAM6 and E3SM show liquid and ice water contents (i.e., LWC and IWC) similar to observations from −25°C to 0°C, but higher LWC and lower IWC than observations at lower temperatures. Simulated in-cloud RH shows higher minimum values than observations, possibly restricting ice growth during sedimentation. As number concentrations of aerosols larger than 500 nm (Na500) increase, observations show increases of LWC, IWC, liquid, and ice number concentrations (Nliq, Nice). Number concentrations of aerosols larger than 100 nm (Na100) only show positive correlations with LWC and Nliq. From −20°C to 0°C, higher aerosol number concentrations are correlated with lower glaciation ratio and higher cloud fraction. From −40°C to −20°C, large aerosols show positive correlations with glaciation ratio. CAM6 shows small increases of LWC and Nliq with Na500 and Na100. E3SM shows small increases of Nice with Na500. Overall, CAM6 and E3SM underestimate aerosol indirect effects on ice crystals and supercooled liquid droplets over the Southern Ocean

    Dependence of the Ice Water Content and Snowfall Rate on Temperature, Globally: Comparison of In-Situ Observations, Satellite Active Remote Sensing Retrievals and Global Climate Model Simulations

    Get PDF
    Cloud ice microphysical properties measured or estimated from in-situ aircraft observations are compared to global climate models and satellite active remote sensor retrievals. Two large datasets, with direct measurements of the ice water content (IWC) and encompassing data from polar to tropical regions, are combined to yield a large database of in-situ measurements. The intention of this study is to identify strengths and weaknesses of the various methods used to derive ice cloud microphysical properties. The in-situ data are measured with total water hygrometers, condensed water probes, and particle spectrometers. Data from polar, midlatitude, and tropical locations are included. The satellite data are retrieved from CloudSat/CALIPSO (2C-ICE, 2C-SNOWPROFILE), and Global Precipitation Measurement (GPM) Level2A. Although the 2CICE retrieval is for IWC, we developed a method to use the IWC to get snowfall rates (S). The GPM retrievals are for snowfall rate only. Model results are derived using the Community Atmosphere Model (CAM5) and the UK Met Office Unified Model (GA7). The retrievals and model results are related to the in-situ observations using temperature and partitioned by geographical region. Specific variables compared between the in-situ observations, models, and retrievals are the IWC and S. The retrieved IWCs are reasonably close in value to the in-situ observations, whereas the models' values are relatively low by comparison. Differences between the in-situ IWCs and those from the other methods are compounded when S is considered, leading to model snowfall rates that are considerably lower than derived from the in-situ data. Anomalous trends with temperature are noted in some instances

    The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century

    Get PDF
    Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels
    • …
    corecore