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1. Introduction
Clouds directly affect Earth's atmospheric radiation budget and climate feedbacks (Ramanathan et al., 1989; 
Webb et al., 2017; Zelinka et al., 2020). Simulating clouds is an intricate challenge for global climate mod-
els (GCMs). In pursuit of improving the fidelity of future climate prediction, a better understanding of 
cloud radiative effects and the environmental conditions for cloud formation is needed. To estimate cloud 
radiative effects, models must accurately represent physical processes occurring during cloud formation 
and evolution, in order to capture cloud microphysical properties (e.g., mass and number concentrations 
of cloud hydrometeors) and macrophysical properties (e.g., vertical and horizontal extent, cloud fraction) 
(Liou, 1992; Liou & Wittman, 1979). Therefore, systematic identification of these physical processes is one 

Abstract A comparative analysis between observational data from McMurdo Station, Antarctica 
and the Community Atmosphere Model version 6 (CAM6) simulation is performed focusing on cloud 
characteristics and their thermodynamic conditions. Ka-band Zenith Radar (KAZR) and High Spectral 
Resolution Lidar (HSRL) retrievals are used as the basis of cloud fraction and cloud phase identifications. 
Radiosondes released at 12-h increments provide atmospheric profiles for evaluating the simulated 
thermodynamic conditions. Our findings show that the CAM6 simulation consistently overestimates 
(underestimates) cloud fraction above (below) 3 km in four seasons of a year. Normalized by total in-cloud 
samples, ice and mixed phase occurrence frequencies are underestimated and liquid phase frequency 
is overestimated by the model at cloud fractions above 0.6, while at cloud fractions below 0.6 ice phase 
frequency is overestimated and liquid-containing phase frequency is underestimated by the model. The 
cloud fraction biases are closely associated with concurrent biases in relative humidity (RH), that is, high 
(low) RH biases above (below) 2 km. Frequencies of correctly simulating ice and liquid-containing phase 
increase when the absolute biases of RH decrease. Cloud fraction biases also show a positive correlation 
with RH biases. Water vapor mixing ratio biases are the primary contributor to RH biases, and hence, 
likely a key factor controlling the cloud biases. This diagnosis of the evident shortfalls of representations 
of cloud characteristics in CAM6 simulation at McMurdo Station brings new insight in improving the 
governing model physics therein.

Plain Language Summary Global climate models (GCMs) historically struggle to accurately 
estimate the amounts and types of clouds over the polar regions. Cloud cover and thermodynamic phase 
directly influence Earth's radiation budget and the accuracy of future climate prediction. Particularly, 
Antarctic ice sheet is vulnerable to a changing climate through interactions with atmosphere and 
ocean, and the impacts of clouds are still not well understood. In this study, shortcomings of cloud 
representations in the CAM6 model were diagnosed by comparing with observational data (ground-based 
remote sensing and radiosondes), which encompassed a year of measurements at McMurdo Station, 
Antarctica. Cloud fraction and phase as well as thermodynamic variables were examined to identify 
model biases. The model overestimates cloud cover above 3 km and underestimates it below that altitude. 
In cases where cloud cover is greater than 60%, the model also produces excessively large percentages 
of liquid clouds. These model biases are well correlated with biases in relative humidity, which is 
further dominated by biases in water vapor concentrations. Thus, these findings indicate that improving 
representations of water vapor concentrations in the model is a key step toward improving the simulations 
of cloud characteristics in Antarctica.
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of the key steps for improving the representation of cloud characteristics and their interaction with other 
parts of the Earth system such as the cryosphere and oceans.

Accurate representation of polar clouds in GCMs is foundational to correctly estimate the rate of global 
warming, given that polar regions bear the brunt of accelerated tropospheric and oceanic warming due 
to anthropogenic climate change (Nicolas et al., 2017; Oppenheimer, 1998; Shepherd et al., 2004; Turner 
et al., 2006). Ground-based and spaceborne remote sensing observations are often used for analysis of cloud 
characteristics in the polar regions. For example, de Boer et al. (2009) used multi-year lidar, radar, radiome-
ter and radiosonde data from two sites in northern Canada and Alaska and found that the characteristics of 
single-layer mixed-phase clouds, such as occurrence frequency, cloud-base height and thickness, vary with 
season and location. Mioche et al. (2015) analyzed satellite observations over the region of Svalbard archi-
pelago and found seasonal and regional variabilities in mixed-phase cloud frequencies, with a minimum 
30% frequency in winter and 50% in other reasons, and a higher frequency in the Svalbard region than the 
rest of the Arctic region. Hemispheric comparisons between Antarctic and Arctic stratiform mixed-phase 
clouds at two research sites showed that McMurdo, Antarctica has a higher supercooled liquid fraction at a 
given cloud top temperature than Utqiaġvik (formerly Barrow) site in the North Slope of Alaska (D. Zhang, 
Vogelmann, et  al.,  2019). Model representation of cloud thermodynamic phases and cloud cover in the 
polar regions is influenced by numerous parameterization schemes (e.g., Hines et al., 2019; Listowski and 
Lachlan-Cope, 2017). A previous study of M. Zhang, Liu, et al., 2019 investigated the sensitivity of low-level 
mixed-phase clouds to various parameterizations in Community Atmosphere Model Version 5 (CAM5). 
They found that the Wegener-Bergeron-Findeisen (WBF) process has a significant effect on the transition 
from liquid to ice phase.

The Antarctic region, in particular, is of high interest for validation of GCMs. The West Antarctic Ice Sheet 
(WAIS), currently the second largest contributor to sea level rise following the Greenland Ice Sheet (Martin 
et al., 2019; Shepherd et al., 2004), has seen ice degradation at an accelerated rate in the presence of strong 
marine air surge into the region. Furthermore, with potentially warmer oceans (Martin et al., 2019) and 
amplified high-pressure ridge (Nicolas et al., 2017) into the future, resultant accelerated melting is a possi-
ble outcome. Several previous studies used spaceborne observations to analyze the atmospheric radiation 
budget and cloud characteristics in Antarctica. Scott and Lubin (2016) used CloudSat and Cloud-Aerosol 
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations and showed that Ross Island 
in Antarctica has the highest ice water content in clouds compared with Utqiaġvik, Alaska and Summit, 
Greenland, which leads to strong impacts on surface radiation energy fluxes. Listowski et al. (2019) used the 
DARDAR (raDAR/liDAR)-MASK cloud product in the southern polar regions and showed that liquid-con-
taining cloud fraction is the highest over open ocean, followed by West Antarctica, and then the Antarctic 
Plateau. Scott et al. (2017) used satellite data to analyze cloud radiative effects over the WAIS, and found that 
longwave radiation from clouds dominates over shortwave reflection and absorption, resulting in a positive 
net cloud radiative effects at the surface with an annual mean value of 34 W m−2. Using in situ observations 
from a tethered balloon, Lawson and Gettelman (2014) found supercooled liquid water existing in almost 
50% of the observed clouds over Antarctica in the austral summer, and a modification of GCM to allow sim-
ilar amount of supercooled liquid water as observed led to an increase of annual net cloud radiative effect 
over Antarctica by +7.4 W m−2.

While there have been more ground-based observations of the high northern latitudes in regards to cloud 
properties, the Antarctic environment is distinct from the Arctic in a number of ways such as moisture and 
aerosol content (Abbatt et al., 2019; Liu et al., 2018; Shupe, 2011; Shupe et al., 2005, 2011; Silber et al., 2018; 
Silber, Verlinde, Cadeddu, et al., 2019). In Antarctica, extreme conditions such as very low temperatures, 
dry atmosphere, and katabatic winds are frequently seen (Bromwich et al., 2012). This is further compound-
ed by the remoteness for operating and maintaining ground-based instruments, which results in a scarcity 
of observations to identify needed improvements in model parameterizations.

Previous evaluation on GCMs often focused on two cloud characteristics–cloud fraction and cloud thermo-
dynamic phases (i.e., ice, liquid and mixed phases). By separating three cloud phases and their respective 
influences on atmospheric radiation budget, satellite observations illustrate a need to correctly simulate 
cloud cover and phase in all parts of the globe (Matus & L’Ecuyer, 2017). Several studies have previously 
used satellite data to evaluate cloud characteristics in various GCMs. Kay et al. (2012) found that CAM5 
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has global annual mean shortwave and longwave cloud forcing biases of −2 and −4 W m−2, respectively, 
based on comparisons with the Clouds and the Earth's Radiant Energy System (CERES)–Energy Balanced 
and Filled (EBAF) data set. Cesana and Chepfer (2013) evaluated the LMDZ5B climate model against a 
spaceborne lidar–the CALIPSO. They found errors in cloud phase partitioning, as the model was unable 
to produce liquid clouds above 3 km. Another study from Bodas-Salcedo et al. (2019) showed that when 
implementing two new schemes (i.e., a mixed-phase cloud microphysics scheme and an aerosol-cloud in-
teraction scheme) in the Hadley Center Global Environmental model (HadGEM3), both schemes dampen 
the negative cloud phase feedback of ice phase transitioning to liquid phase in a warmer climate, leading to 
a higher equilibrium climate sensitivity (ECS). Guo et al. (2020) used CALIPSO observations to evaluate the 
CAM5 model and found that the model underestimates (overestimates) global mean liquid (ice) cloud frac-
tion at all altitudes. Li and Xu (2020) compared CloudSat and CALIPSO satellite observations with multiple 
GCMs and reanalysis data. Their study showed reduced low cloud cover with colder surface and stronger 
stability in the observations, yet not all of their model simulations were able to capture such feature. Be-
sides satellite-based comparisons, other studies use aircraft observations to evaluate GCM simulations of 
high-latitude cloud characteristics. D’Alessandro et al. (2019) used aircraft-based in situ observations over 
the Southern Ocean around Punta Arenas, Chile and showed that CAM5 only simulates ice phase clouds 
below −15°C and underestimates ice water content in ice clouds by 1–1.5 orders of magnitude. Gettelman 
et  al.  (2020) used in situ observations around Hobart, Australia and found that the CAM6 simulations 
showed improvements by allowing supercooled liquid water to exist below −15°C compared with the older 
version CAM5. Differing from those previous studies, this work will focus on the Antarctic region, where 
GCMs are less frequently evaluated.

The United States (US) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) West 
Antarctic Radiation Experiment (AWARE) field campaign was deployed at McMurdo Station located on 
Ross Island, Antarctica, and provided unprecedented amount of comprehensive ground-based observations 
of Antarctic clouds. These observational data are valuable for the diagnosis of model biases and for provid-
ing observation-based constraints to future parameterizations in GCMs. This study focuses on the exam-
ination of cloud fraction and cloud phase from the AWARE campaign and the utilization of the AWARE 
data set to evaluate the National Center for Atmospheric Research (NCAR) Community Earth System Mod-
el version 2 (CESM2)/Community Atmosphere Model version 6 (CAM6) (Danabasoglu et al., 2020). This 
study is driven by two scientific questions: first, is CAM6 capable of simulating realistic representations of 
cloud fraction and phase? Second, are the biases of cloud fraction and cloud phase exhibited by the model 
related to thermodynamic biases that underly the formation of simulated clouds? In Section 2, the observa-
tional data set and model simulation are described in detail. Section 3 shows comparison results on a series 
of cloud characteristics and thermodynamic conditions. A discussion of the results and their implications 
are included in Section 4.

2. Observational and Simulation Data Set
2.1. Observations

The AWARE campaign provided a comprehensive data set of cloud and radiation observations during a full 
year in the Antarctic between December 2015 and December 2016 (Lubin et al., 2020). The campaign was 
based at the US McMurdo Research Station, located on Ross Island at 77°50΄47˝S, 166°40΄6˝E. During the 
sampling period, an ARM mobile facility (AMF) was deployed at the research station to measure atmos-
pheric properties.

A cloud mask data set that quantifies cloud occurrence fraction and cloud phase was generated following 
Silber et al. (2018). This data set was largely based on measurements from two ground-based remote sensing 
instruments, namely the Ka-band ARM Zenith Radar (KAZR; Widener et al., 2012)—a millimeter wave-
length zenith pointing radar capable of detecting fine cloud liquid and ice particles, and the High Spectral 
Resolution Lidar (HSRL; Eloranta, 2006)—a lidar capable of separating the backscattered signal of aerosols 
(e.g., hydrometeors) from the atmospheric molecular signal. The cloud masks provide four detection classes 
in each linearly interpolated 30 m by 10 s grid cell: clear sky (hydrometeor-free), ice phase-only hydrome-
teors, liquid phase (may also contain ice hydrometers), and unknown phase. While from a volume-wise 
perspective the unknown phase mainly represents the ice phase class, these hydrometeors were detected 
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only with KAZR (above HSRL attenuation level), and hence, their phase cannot be reliably determined in 
bulk processing using only single-frequency zenith-pointing radar measurements (Silber et al., 2020). These 
cloud masks were quality controlled using microwave radiometer (MWR; Morris,  2006) measurements, 
which were used for liquid water path retrievals, and a ceilometer, which was used to detect cloud base 
height and delineate ice and liquid layers at the lowest altitudes. For temperatures <−38°C, all detected 
hydrometeors are defined as ice phase in the observations; for temperatures >0°C, all hydrometeors are 
defined as liquid phase. Between −38 and 0°C, clouds can be ice, liquid or mixed phase.

Twice-daily at the research station (approximately 10 and 22 UTC), radiosondes were released to measure 
vertical profiles of temperature, water vapor partial pressure (e), winds, and pressure. Relative humidity 
with respect to liquid (RHliq) and ice (RHice) are further derived from temperature and e measurements. 
These sounding data are used for analysis of thermodynamic conditions in conjunction with cloud retriev-
als. Relative humidity measurement uncertainty by ARM radiosonde is about 5%.

2.2. CAM6 Model Simulation

The NCAR CAM6 model, the atmospheric module of the CESM2 model, is compared against the obser-
vations. CAM6 utilizes the Morrison-Gettelman double-moment microphysics scheme (MG2), which 
simulates four classes of hydrometeors, namely liquid droplets, ice particles, snow, and rain (Gettelman 
et al., 2015; Gettelman & Morrison, 2015). MG2 allows for ice supersaturation and pre-existing ice in ice 
nucleation based on Shi et al.  (2015), contains a heterogeneous ice nucleation parameterization (Hoose 
et al., 2010), and considers the contact angles of ice nucleating particles (INP) from Wang et al. (2014). MG2 
cloud microphysics scheme is also coupled with Cloud Layers Unified by Binormals (CLUBB) scheme–a 
moist turbulence closure scheme developed by Larson et al.  (2002) and Golaz et al.  (2002a, 2002b) and 
implemented by Bogenschutz et al. (2013) into the CAM physics suite. CLUBB is involved in simulating 
boundary layer moist turbulence, stratiform clouds, and shallow convection, while deep convection is based 
on Zhang-McFarlane scheme by Neale et al. (2008) and G. J. Zhang and McFarlane (1995). Radiation is han-
dled by the Rapid Radiative Transfer Model for General Circulation Models (RRTMG) (Iacono et al., 2000).

Temperature and horizontal wind fields in CAM6 simulation were nudged toward the NASA Modern-Era 
Retrospective analysis for Research and Applications version 2 (MERRA-2) (Molod et al., 2015), in order to 
represent closer-to-reality meteorological conditions seen at the study location. The nudging was done with 
a relaxation time of 24 h. Water vapor was not nudged, because it is part of the model tracer suite and state, 
which needs to be prognosed and consistent with the parameterizations in order to have any physical basis 
for the clouds. The nudging method was previously used in several studies that compared GCM simulations 
with observations (D’Alessandro et al., 2019; K. Zhang et al., 2014). The model setup is similar to Gettelman 
et al. (2020). The model was run using the default 32 sigma hybrid pressure layers from surface to 3 hPa at 
30-min time steps, and a horizontal resolution of 0.5° latitude by 0.63° longitude. The analysis focuses on a 
single-column model output that is collocated with the McMurdo Station. The CAM simulation was spun-
up for 6 months and run from June 1, 2015 until February 12, 2017. Only the dates that overlap with the 
AWARE campaign are used for comparison.

Variables used from CAM6 for comparison include ice water content (IWC, g/kg), liquid water content 
(LWC, g/kg), temperature (°C), water vapor mixing ratio (WVMR, g/kg), and cloud fraction (ranging from 
0 to 1). WVMR was calculated for both the observations and the CAM6 output based on water vapor partial 
pressure (e) and atmospheric pressure (p): WVMR = 0.622 × e/(p–e). Combining e and saturation vapor 
pressure with respect to ice (es, ice) or liquid (es, liq), one can derive RHice and RHliq for the simulation, respec-
tively. The equations for es, ice and es, liq are based on Murphy and Koop (2005). RHice is only calculated for 
T < 0°C, and RHliq is only calculated for T > −38°C. Three cloud phases are defined in the simulation based 
on thresholds of ice mass fraction defined in D’Alessandro et al. (2019). That is, liquid phase is defined as 
the ratio of IWC/cloud water content (CWC) < 0.1, ice phase is defined as IWC/CWC > 0.9, and mixed 
phase is defined as 0.1 ≤ IWC/CWC ≤ 0.9. Here CWC is defined as the sum of IWC and LWC. A threshold 
of 10−4 was applied to model cloud fraction output as the limit of in-cloud condition. In addition, in-cloud 
condition in the simulation also needs to satisfy CWC > 10−7 g m−3, which is a typical limit used for defining 
in-cloud condensed water mass concentrations in GCMs (e.g., Patnaude et al., 2021).
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All the analysis in this work is restricted to altitudes below 10 km. When comparing the model simulation 
output with radiosonde observations, even though sounding locations normally deviate from its original 
position after release, we found that all soundings are still within the same CAM6 model column as they 
reach 10 km. The model grid box used for comparison has surface altitude of 2.3 m, and the altitude of 
McMurdo Station is 69 m. In addition, we compared the selected model column at McMurdo Station with 
the surrounding columns and found relatively small differences in cloud characteristics among the adjacent 
model grid boxes (cf. Silber, Verlinde, Wang, et al., 2019, see their Figures S3–S5).

3. Results
3.1. Comparison of Times Series of Cloud Fraction, Cloud Phase and Thermodynamic 
Conditions

Time series of coincident observed and simulated cloud fraction and phase are shown in Figure 1. In this 
case, CAM6 overestimates cloud fraction between surface and 3 km from 12 UTC January 6 to 12 UTC Janu-
ary 8, 2016, and underestimates cloud fraction between surface and 3 km from 12 UTC January 8 to 00 UTC 
January 10, 2016 (Figures 1a and 1b). For cloud phase (Figures 1c and 1d), CAM6 simulates deeper layers of 
liquid and mixed phase (e.g., January 10–13) with a geometrical thickness of 1–3 km, while the observations 
often show geometrically thin layers of liquid phase with a thickness of 100–200 meters (e.g., from 12 UTC 
January 8 to 12 UTC January 9). In addition, the observed liquid phase layers are generally located on top 
of the clouds and above ice phase (precipitation), while the simulated liquid and mixed phase layers are 
located underneath the ice phase at the bottom of the cloud layer. This observed feature is consistent with a 
previous study, which showed that ice precipitation at cloud base occurs frequently (∼75%) over McMurdo 
(Silber et al., 2021). It is likely that the vertical resolution of the model may be too coarse to represent the 
gradients necessary to maintain various dynamical processes. For example, correctly simulating turbulent 
entrainment of newly produced ice nucleating particles (INPs) from above has been found to be important 
for cloud formation over the Southern Ocean (Atlas et al., 2020).

For the thermodynamic condition, a sounding profile of temperature and RHice at 1131 UTC is compared 
with a model output at 1130 UTC on January 10, 2016 (Figures 1e and 1f). The temperature biases are gen-
erally within 1–2°C, with the maximum cold bias of 4°C in the model at the cold point tropopause at 9 km 
(Figure 1e). Compared with the RH sounding data (Figure 1f), the simulation shows high RHice biases of 
20%–30% above 3 km, and low RHice biases of 10%–20% between 1.5 and 3 km. These differences in RHice 
are consistent with the fact that cloud fraction below unity was observed above 3 km (Figure 1a) while the 
simulated cloud fraction is close to unity (Figure 1b). The sharp decrease of RH in CAM6 around 1–2 km is 
also consistent with the narrow hydrometeor-free layer simulated at that time and location. Both tempera-
ture and RH sounding data are gridded onto the coarser CAM6 vertical bins, yet sharp changes in observed 
RH (e.g., at 5 km) are still not captured by the simulation.

Model biases of RHice and cloud fraction (henceforth, dRHice and dCF, respectively) are defined here as the 
simulated values minus the observed values. The histograms of their absolute values, |dRHice| and |dCF|, 
are shown in Figure 2 for the duration of the entire AWARE campaign. Most |dRHice| values are less than 
20%. |dCF| has a bimodal distribution with the primary and second peak near 0 and 1, respectively. The bin 
of |dCF| < 0.05 becomes the secondary peak after excluding cases when both observations and simulations 
show CF = 0 as well as when they both show CF > 0.95. The peak at |dCF| < 0.05 suggests that CAM6 out-
put captures the observed cloud fraction. The peak of |dCF| near 1 indicates that model either completely 
misses the observed cloud fraction or produces spurious cloud fraction at one.

3.2. Seasonal Variabilities of Cloud Fraction, Temperature, Water Vapor and RHice

A comparison on average cloud fraction for the entire campaign as well as four seasons of a year is conducted 
(Figure 3a). For all the vertical profile comparisons in this section, observations are gridded into the model 
vertical levels. Average cloud fraction of the observations is calculated as the number of in-clouds samples 
divided by the total number of samples at 10-s resolution in a certain time period. Average cloud fraction bi-
ases are calculated as the simulated minus the observed seasonal or annual average cloud fractions. Average 
cloud fraction and average cloud fraction biases exhibit both seasonal and altitudinal dependence. Observed 
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Figure 1. Simultaneous times series based on the ARM West Antarctic Radiation Experiment campaign observations and CAM6 simulation between 00 UTC 
on January 6, 2016 and 00 UTC on January 13, 2016. (a) Cloud fraction calculated for every hour based on ground-based observations. (b) CAM6 cloud fraction. 
(c) Cloud phases in four types based on ground-based observations at 10-s resolution. (d) CAM6 cloud phase. (e) Temperature profile based on radiosonde 
released at 1131 UTC on January 10, 2016 re-gridded to model altitudes, compared with model output at 1130 UTC on January 10, 2016. (f) As in (e) but 
showing the RHice and RHliq profiles. Purple vertical lines in curtain plots denote sounding release time.
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cloud fraction exhibits the maximum at approximately 1 km. The austral fall (March, April, May; MAM) 
and austral summer (December, January, February; DJF) show the highest cloud fraction below and above 
1.5 km, respectively. The austral spring (September, October, November; SON) and austral fall (MAM) show 
the smallest cloud fraction below and above 3 km, respectively.

CAM6 exhibits much lower cloud fractions below 2 km, and its maximum average cloud fraction occurs 
at a slightly higher altitude, that is, approximately 2 km for austral summer and fall and 5.5 km for austral 
winter (June, July, August; JJA) and spring. In addition, the observed cloud fraction decreases significantly 
with altitudes and becomes less than 0.2 above 4 km. In comparison, simulated cloud fraction remains 
above 0.2 up to 7.5 km and decreases significantly above that altitude. Accordingly, a change in the sign 
of cloud fraction biases is seen around an altitude of 2–3 km. That is, negative and positive cloud fraction 
biases are seen for each seasonal averaging period below and above this altitude, respectively (Figure 3b). 

Figure 2. Histograms of (a) |dRHice| and (b) |dCF| occurrences during the entire West Antarctic Radiation Experiment 
campaign. Note the logarithmic y-axis scale in panel (b). Red bar is similar to blue bar in the first bin but excludes cases 
when both observations and simulations show CF = 0. Green bar further excludes cases when both observations and 
simulations show CF = 0 and when they both show CF > 0.95.

Figure 3. (a) Vertical profiles of average cloud fraction based on observations and model simulation for different seasons (i.e., December, January, February, 
March, April, May, June, July, August, and September, October, November) as well as for the entire West Antarctic Radiation Experiment campaign. (b) Cloud 
fraction biases (model minus observation) averaged by each season and the entire campaign.
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Below 1 km, MAM shows the largest negative cloud fraction bias with the peak bias of −0.42 at 0.25 km, and 
DJF shows the smallest negative bias (around −0.2 to −0.1). Above 3 km, CAM6 exhibits the largest positive 
cloud fraction bias during austral winter (JJA), with the maximum value of 0.35 at 6.5 km.

Average temperature and temperature biases are shown in Figure 4. Since the model was nudged toward re-
analysis data for temperature, thus temperature biases shown here originate from biases in reanalysis data. 
Negative (positive) temperature biases are seen below 2 km (between 2 and 8 km) in all averaging periods 
(Figure 4b). The magnitudes of the negative temperature biases decrease from −6 to 0°C with increasing al-
titude at 0–2 km, while the magnitudes of the positive biases increase from 0 to 2°C with increasing altitude 
at 2–8 km. Seasonal variabilities in temperature biases are relatively small, aside from the DJF averaging 
period, which has the smallest magnitudes of both negative and positive biases. Near-surface temperature 
inversions are seen in observations during austral fall and winter (MAM and JJA) at 0.25 km with an av-
erage magnitude of about 1°C, while the simulation shows more pronounced near-surface temperature 
inversions (∼5°C on average) than observations for all seasons except DJF (Figure 4a).

Similar to the near-surface temperature inversions, small near-surface moisture inversions were observed 
at 0.25 km during austral fall and winter (MAM and JJA), while the simulation shows much stronger mois-
ture inversions at higher altitude, with average WVMR magnitudes of 0.1–0.2 g/kg inside deeper inversion 
layers that extend from 0.25 to 1 km (Figure 5a). In addition, more surface moisture was observed during 
the austral summer. The simulation can represent the higher moisture during austral summer. Below 2 km, 
CAM6 exhibits negative WVMR biases in all seasons except DJF (Figure 5b). Above 2 km, the model exhib-
its positive WVRM biases in all seasons. Similar to the seasonality of temperature biases, the WVMR biases 
in DJF differ the most from the rest of the year. While the temperature biases of DJF are the smallest for 
all altitudes, the water vapor biases of DJF are smallest in magnitude below 1 km and largest above 1 km.

The seasonal averages of RHice as well as RHice biases are shown in Figure 6. Observation profiles show 
that RHice has a local minimum (60%–70%) close to the surface at about 0.5 km (Figure 6a). The max-
imum RHice occurs at 1.5 km (70%–80%), and above this altitude the observed RHice decreases mono-
tonically from 60%–80% to 10%–40% at 10 km. CAM6 shows similar RHice variability with altitudes, but 
with a smaller local minimum RHice of 50%–70% at 0.25 km, and a larger maximum RHice of 70%–90% 
at 1.5  km. CAM6 also consistently shows higher RHice than observations above 1  km. Thus, CAM6 

Figure 4. Similar to Figure 3, but for temperature.
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exhibits positive biases between 1 and 10 km, negative RHice biases between 0.1 and 1 km, and positive 
biases at the lowest 0.1 km (Figure 6b).

A comparison among MERRA-2, CAM6 and observations is shown for temperature, WVMR and RHice 
(Figure 7). The comparison results show similar magnitude and sign of temperature biases for CAM6 and 
MERRA-2. CAM6 shows slightly larger temperature biases below 1.5 km compared with MERRA-2, indi-
cating that nudging contributes to some but not all of the temperature biases shown in the model. WVMR 
in CAM6 shows smaller low bias below 1 km and larger high bias above 4 km compared with MERRA-2, 

Figure 5. Similar to Figure 3, but for water vapor mass mixing ratio.

Figure 6. Similar to Figure 3, but for RHice.



Journal of Geophysical Research: Atmospheres

YIP ET AL.

10.1029/2021JD034653

10 of 21

which also leads to a smaller low bias of RHice below 1 km and a larger high bias of RHice above 4 km in 
CAM6 than MERRA-2.

3.3. Evaluation of Cloud Phase and Related Thermodynamic Conditions

Distributions of various cloud phases are shown for observations and simulations in Figure 8. Figure 8 sums 
up the total ground-based observation samples at 10-s resolution as well as the closest model grid matching 
with each observation sample in various conditions (i.e., various cloud phases and clear-sky conditions). 
This method provides a total of 3.4 million samples in each of the 334 vertical layers for the 10-s observa-
tions from surface to 10 km. For total in-cloud frequency, CAM6 underestimates and overestimates total 
cloud frequency below and above 2.5 km, respectively, which is consistent with the cloud fraction biases 
seen in Figure 3. For these collocated observation and model data, CAM6 underestimates ice phase occur-
rences below 2.5 km and overestimates ice phase above 2.5 km. For the unknown phase in the observations, 
if we assume that all unknown phase in the observation was liquid-containing clouds at 0.3–2  km, the 
model would still overestimate liquid-containing cloud phase occurrences at those levels. However, above 
2 km, if we assume that all unknown phase was liquid-containing clouds, the model would underestimate 
the liquid-containing cloud phase occurrences. Since liquid phase is less likely to occur at higher altitudes 
because of the lower temperatures (e.g., McErlich et al., 2021), it is more likely that the model also overesti-
mates liquid occurrence at higher altitudes.

Figure 9 provides a more detailed evaluation of the simulated cloud phase by comparing each type of ob-
served cloud phase with the closest model output in time. Observations are separated into four types of 
conditions–ice phase, liquid phase, unknown phase, and clear-sky condition. When observations show ice 

Figure 7. A comparison among Modern-Era Retrospective analysis for Research and Applications version 2, CAM6 and observations at McMurdo Station over 
the time period of the West Antarctic Radiation Experiment campaign is shown for (a) temperature, (b) water vapor mixing ratio and (c) RHice.
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phase, the dominant cloud phase in the collocated simulation output is also ice phase, although the simu-
lation only captures about 30%–50% of the observed ice phase below 4 km and misidentifies the majority 
of the ice phase below 2 km as clear-sky conditions. When observations show liquid phase, the simulation 
captures about 20% of them as liquid phase and 10% as mixed phase, while misidentifies 20% of them as 
ice phase and the rest as clear-sky conditions. When observations show unknown phase, the simulation 
captures 50%–90% of these instances as ice phase, in agreement with the previous finding that unknown 
phase is most likely ice phase (Silber et al., 2020). For the observed clear-sky conditions, the simulation 
correctly represents about 60%–80% of these instances, while the rest is mostly misidentified as ice phase. 
Overall, these comparisons show that the dominant phase of simulation matches well with the observed 
phase under each condition especially when combining simulated liquid and mixed phase occurrences to 
compare with observed liquid phase, although the simulation only captures 30%–50% of the observed ice 
and liquid phase.

Occurrence frequencies of ice, liquid, and mixed phases normalized by total in-cloud samples are depicted 
in Figure  10. Figure  10 examines the correlation between cloud phase biases and cloud fraction biases, 
and also redefines observed cloud phases on a coarser scale. Differing from Figures 8 and 9 that use cloud 
phases defined by high-resolution (10-s) observations, the analysis in Figure  10 defines observed cloud 
phase by calculating the proportion of ice phase among all cloud phases within ± 15 min surrounding each 
half-hourly model output. Note that this proportion (or relative frequency) of ice phase is not the same as 
ice cloud fraction, since the former value equals the number of ice phase divided by the number of in-cloud 
samples, while the latter value equals the number of ice phase divided by the number of total samples 
(i.e., both in-cloud and clear-sky conditions). Observation samples with ice phase proportion <0.1, between 
0.1–0.9 and > 0.9 are defined here as liquid, mixed and ice phase, respectively.

Figure 8. Observed (solid lines) and simulated (dashed lines) cloud phases, shown in number of samples for the entire 
campaign. Clear-sky samples are shown in gray color. Cloud phases are based on observations at 10-s resolution, which 
include ice, liquid, and unknown phases. They are compared with the closest model output in time.
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The occurrence frequency of each cloud phase is normalized by the total number of cloud occurrences in a 
certain range of cloud fraction. The unknown phase in the observations between −38°C and 0°C is excluded 
from these calculations. Differences in cloud phase frequencies are seen depending on the cloud fraction 
ranges. Overall, at cloud fraction >0.9, the simulation underestimates (overestimates) ice (liquid) phase 
frequency, particularly below 3 km by 20%–50% points. As cloud fraction decreases, the simulation shows 
smaller biases in ice and liquid phase frequencies below 2 km, but shows larger biases in ice and mixed 
phase frequencies between 2 and 5 km, that is, overestimating (underestimating) ice (mixed) phase fre-
quency by up to 30% points. For observations below 5 km, ice (mixed) phase frequency increases (decreases) 
with cloud fraction, while liquid phase frequency is relatively independent of cloud fraction. Comparative-
ly, simulation shows opposite trend below 5 km, that is, simulated ice (liquid) phase frequency decreases 
(increases) with cloud fraction, while mixed phase frequency slightly increases with cloud fraction. Above 
5 km, both observations and simulation show nearly 100% of ice phase.

To examine the sensitivity of the comparison results to the unknown phase, Figures  S1–S3 assume the 
observed unknown phase at −38–0°C being ice, liquid and mixed phase, respectively. For cloud phase fre-
quencies of the entire cloud fraction range, including the observed unknown phase in ice phase leads to a 
slightly larger low-level bias of ice phase in the simulation compared with Figure 10. Including the observed 
unknown phase as either liquid or mixed phase leads to significant increases of the frequencies of these 
phases, since the number of samples for these phases is originally small in Figure 10. Such results agree 

Figure 9. Comparisons of observed and simulated cloud phase when observations show (a) ice phase, (b) liquid phase, (c) unknown phase, and (d) clear-sky 
condition. The number of observed samples is shown in thick lines, while the simulation output is designated by thin lines. Cloud phases are based on 10-s 
resolution observations. The model output closest to each observation sample is used for this comparison.
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with the volume-wise dominance of ice in the unknown class (e.g., Figure 1), and also insinuate on a greater 
relative occurrence of liquid or mixed-phase determined as unknown at lower-levels. Note that this compar-
ison in Figure 10 analyzes the occurrence frequencies of various cloud phases for the entire observation and 
simulation data set(s) without restricting the observations to be compared against the closest model output 
only, which differs from the comparisons of concurrent observations and model output in Figures 8 and 9.

3.4. Impacts of Thermodynamic Conditions on Cloud Phase and Fraction Biases

As both cloud fraction and cloud phase are governed by the thermodynamic conditions, the correlations of 
model biases of cloud fraction and cloud phase with respect to biases of RHice are further examined. Fig-
ures 11a–11d depict the number of samples for correctly simulated ice and liquid phase (hits) and incorrect-
ly simulated ice and liquid phase (misses) binned by the absolute RHice biases (|dRHice|) of 0%–5%, 5%–20%, 
>20%, and all |dRHice|. The comparison is conducted by comparing each observation sample with the closest 

Figure 10. Comparisons of cloud phase frequency between observations and the model simulation, including (a–e) ice phase, (f–j) liquid phase, and (k–o) 
mixed phase. The last row (p–t) stands for the number of total in-cloud samples for various cloud fraction ranges. Each cloud phase is separated into five ranges 
of cloud fraction (in five columns) and is compared for the entire AWARE campaign. 10-s resolution observation data are averaged to 30 min surrounding the 
closest model output to derive three cloud phases in this figure. The observed unknown phase below −38°C and above 0°C is included as ice and liquid phase, 
respectively. The remaining unknown phase between −38 and 0°C is excluded.
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model output in time, similar to Figure 9, but shows fewer samples than Figure 9. This is because Figure 11 
only uses the model output within ± 30 min of the radiosonde RH measurements to calculate |dRHice|, 
which also reduces the number of model output used for cloud phase comparisons. Figures 11e–11h show 
the occurrence frequencies of ice (or liquid) phase hits and misses, normalized by the total number of sam-
ples when observations show ice (or liquid) phase. For ice phase comparisons, when |dRHice| ≤ 5%, most 
(>95%) of the observed ice phase is captured by the model between 5.5 and 7.5 km, while the frequencies of 
capturing ice phase decrease from 90% to 20% with decreasing altitudes from 5.5 km to surface. This result 
indicates that the model has more difficulties of capturing lower-level ice phase than higher-level ones. A 
decreasing trend is seen in the frequencies of model capturing ice phase when larger absolute RH biases are 
seen. These results suggest that larger magnitudes of absolute RHice biases likely cause higher frequencies 
of model misrepresenting ice phase. For liquid phase, due to the small sample size, the frequency of hits 
of liquid phase is more variable and the overall frequency of capturing liquid phase correctly is lower than 
0.7. For lower-level liquid phase below 1.5 km, simulation samples with smaller absolute |dRHice| show 
high frequencies of capturing liquid phase as observed. The results suggest that absolute RHice bias plays an 
important role in the success of CAM6 simulating cloud phase accurately.

To isolate the influences of thermodynamic conditions on cloud fraction, correlations of model biases of 
cloud fraction (dCF) with respect to biases of RHice and RHliq (i.e., dRHice and dRHliq, respectively) are ana-
lyzed (Figure 12). Positive relationships are seen between cloud fraction and RH biases. Two types of linear 
regressions are calculated, one with all points of dCF included (Figures 12a and 12c) and the other one fo-
cusing on the less dominant dCF values by excluding dCF values of −1, 0, and 1 (Figures 12b and 12d). The 
latter type of linear regression examines the correlation between dRH and dCF when the simulation pro-
duces partially correct cloud fraction values instead of completely correct (dCF = 0) or completely wrong 
(dCF  =  +1 or −1) values. Slightly higher coefficients of determination (r2) are seen in the latter linear 
regressions (0.294, 0.303) compared with the former regressions (0.257, 0.268). In addition, slightly higher 
positive slopes are seen when removing dCF of 0 and ± 1. For dRHice, removing dCF of −1, 0 and 1 shows 

Figure 11. Hits and misses of ice and liquid phase in terms of (a–d) number of samples and (e–h) frequencies, binned by |dRHice| biases, including 
|dRHice| ≤ 5%, 5% < |dRHice| ≤ 20%, |dRHice| > 20%, and all |dRHice|. Each observation sample is compared with the closest model output. The gray dashed line 
denotes all samples used for the comparison within a certain |dRHice| range. The observed unknown phase is excluded from this analysis.
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dCF = 0.0107 × dRHice–0.100, while using all dCF values shows dCF = 0.00848 × dRHice–0.121. Similarly, 
the linear regression with respect to dRHliq shows dCF = 0.0138 × dRHice–0.0872 when excluding dCF = −1, 
0, and 1, and dCF = 0.0110 × dRHice–0.111 when using all data. Slightly lower correlations are seen when 
including cases of dCF = −1, 0, and 1, likely because dRH values show larger variations when either one 
or both of the data set(s) show clear-sky conditions. That is, when either observation or simulation is clear 
sky while the other one is in-cloud (i.e., dCF = 1 or −1), or when both observation and simulation are clear 
sky (i.e., part of the cases of dCF = 0), the data set(s) with clear-sky conditions can have RH ranging from a 
few percentage points to near saturation, while the data set with in-cloud conditions often has RH around 
saturation, therefore leading to a wide range of dRH values.

The correlations of cloud fraction biases with respect to RH biases demonstrate the importance of further 
understanding key factors contributing to RH biases. Thus, we decompose the biases of RH into three com-
ponents, that is, contributions of temperature biases (dRHT, Figures 13a and 13d), contributions of water 
vapor biases (dRHq, Figures 13b and 13e) and an higher order term representing their covariance biases 
(dRHq,T, Figures 13c and 13f). This method is similar to that previously described in Diao et al.  (2014). 
dRHice,T has both a weaker contribution (slope = 0.0530) and weaker correlation (r2 = 0.014) with respect 
to dRHice than dRHice,q (slope = 0.976; r2 = 0.71). Similarly, water vapor biases are the main contributor to 

Figure 12. Correlations of dCF with respect to (a and b) dRHice and (c and d) dRHliq. Linear regression is applied to all data in (a) and (c), while (b) and (d) 
excludes dCF = −1, 0, and 1.
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dRHliq biases. Thus, water vapor biases have a much stronger influence on both RHice and RHliq biases than 
temperature biases. Combining this finding with the results from Figures 11 and 12, it indicates that the 
model biases of cloud phase and cloud fraction are correlated and possibly attributable to misrepresenta-
tions of water vapor concentrations in CAM6.

4. Discussion and Summary
One of the AWARE campaign's main goals is to better understand the processes that affect changes in Ant-
arctica, which is heavily influenced by the atmospheric phenomena present in the local region. This study 
identifies biases of cloud characteristics in CAM6 at the McMurdo research location and specifies concur-
rent biases exhibited in cloud fraction, cloud phase and thermodynamic conditions (i.e., temperature, RH, 
and WVMR). Methods are developed to compare higher-resolution radar-lidar cloud mask data and collo-
cated radiosonde profiles of temperature and moisture with a coarser-scale simulation by CAM6. By doing 
so, model biases in cloud fraction, cloud phase, temperature, RH and WVMR are quantified both seasonally 
and during the entire campaign. Furthermore, correlation analyses suggest thermodynamic conditions, 
particularly atmospheric moisture, play a key role in determining the model biases of cloud characteristics. 
Even though the bulk Antarctic cloud properties observed over McMurdo may not fully represent statistics 
of Antarctic clouds at a larger synoptic scale (Silber, Verlinde, Cadeddu, et al., 2019), the station served as 
the only location equipped with required infrastructure to support such a comprehensive deployment, and 
still allows the examination of important cloud-related processes and the atmospheric state. In addition, 
cloud formation at McMurdo Station is affected by the local small-scale complex terrain, wind regime, 
and mesoscale activity such as cyclogenesis around Ross Ice Shelf and Ross Island in particular (Carrasco 
et al., 2003; Monaghan et al., 2005; Simmonds et al., 2003), the representation of which could be deficient in 

Figure 13. Decomposition of (a)–(c) dRHice and (d)–(f) dRHliq into three components, that is, (a) dRHice,T, (b) dRHice,q, (c) dRHice,q,T, and (d) dRHliq,T, (e) dRHliq,q, 
(f) dRHliq,q,T. Linear regression is applied to each sub-plot.
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coarse-resolution climate models. Therefore, future investigation is needed to evaluate model performance 
under various meteorological conditions as well as for other locations of the Antarctic continent.

This study finds that CAM6's cloud fraction shows different signs of biases at lower and upper vertical lev-
els, that is, the simulation underestimates cloud fraction below 3 km and overestimates cloud fraction above 
3 km. The seasonal variations in cloud fraction biases are mostly within 0.1–0.2. Such vertical variations of 
cloud fraction bias is also well correlated with those seen in temperature, WVMR and RH. That is, positive 
(negative) biases of cloud fraction are correlated with positive (negative) biases of temperature, water vapor, 
and RH. Comparing the contributions of temperature and water vapor biases to the RH biases in vertical 
profiles, water vapor biases are the dominant contributor to both the magnitude and the direction of RH bi-
ases in vertical profiles. For these thermodynamic conditions, their seasonally averaged values are relatively 
similar, except for DJF with higher temperature and WVMR. The underestimation of low cloud fraction in 
CAM6 is possibly due to an adjustment to cloud fraction, which reduces the RH-derived low cloud fraction 
when the grid-box mean water vapor specific humidity is below 3 g/kg (also known as “freeze-dry”) (Vavrus 
& Waliser, 2008). The altitudinal dependence of cloud fraction biases may also be partly due to CAM6 failing 
to represent the effects of katabatic flow seen in this region, as previously suggested for forecast and reanal-
ysis models (e.g., Silber, Verlinde, Wang, et al., 2019; Wille et al., 2016). McMurdo Station is located close 
to multiple topographic features (Mount Erebus, Black and White Islands, etc.), which impact the mesos-
cale representation of lower tropospheric flow by radiosonde observation. Due to this limitation, simulated 
dynamical conditions are not evaluated in this work, while future investigation is warranted given their 
potential influences on cloud formation and moisture inflow.

Correlation analyses between cloud characteristics and thermodynamic conditions show important result 
for identifying the key factors contributing to model performance. RH is seen to affect cloud fraction biases, 
while WVMR bias is seen to be the primary driver of RH bias. Thus, these local results at McMurdo suggest 
that it may be important to improve estimation of WVMR in Antarctica, in order to reduce the biases of RH 
and cloud characteristics in the simulation. The misrepresentation of water vapor in the model originates 
in various parameterizations as well as the coarse model grid spacings. In the free troposphere, a combi-
nation of errors in the source of water vapor (e.g., remote convective detrainment, freeze drying in cirrus) 
and errors in transport and diffusion from the planetary boundary layer may lead to water vapor biases and 
smoothed out gradients. In addition, the fact that model cannot resolve the fine scale structure of water 
vapor in the atmosphere (particularly in the vertical) can also create errors. As a previous study pointed 
out, the lack of water vapor sub-grid variability in the CAM5 model likely leads to local dry biases and an 
underestimation of cloud fraction (Wu et al., 2017). A previous study that evaluated CAM6 against in situ 
observations over the Southern Ocean found that reducing temperature bias can also help to reduce mois-
ture bias substantially (Gettelman et al., 2020). Future model development is recommended to examine 
the impacts of convective detrainment, freeze drying, and sub-grid scale parameterizations on water vapor 
biases as well as the correlation between temperature and water vapor biases.

The overestimation of liquid-containing cloud phase is consistent with several studies of phase parti-
tioning using the DOE E3SM climate model based on ground-based and satellite observations (Rasch 
et al., 2019; M. Zhang et al., 2020; Y. Zhang, Xie, et al., 2019). Based on Arctic ground-based observa-
tions, M. Zhang et  al.  (2020) showed that two new parameterizations used in CAM6—the classical 
nucleation theory (CNT) and the CLUBB parameterizations—produce lower initial ice crystal number 
concentrations compared with the older version CAM5 model. CAM6 also uses MG2 cloud microphys-
ics parameterization, which reduces the WBF process and lowers the conversion from liquid phase to 
ice compared with CAM5. Such change in the MG2 was found to have a smaller impact than those 
contributed by CNT and CLUBB. In addition, the current version of CAM6 does not include marine 
organic aerosols, which have been found to be an important type of INPs at 950 hPa over Antarctica 
and the Southern Ocean (Zhao et al., 2021). The lack of consideration of marine organic aerosols as 
INPs may also contribute to the lower occurrence frequency of ice phase at cloud fraction >0.6 shown 
in our evaluation of CAM6 at McMurdo Station. Since no INP measurements were provided by the 
AWARE campaign, acquiring additional observations of INPs in the future are recommended for this 
remote region in order to quantify the impacts of various types of INPs over Antarctica. Another study 
showed that the simulated IWC and ice crystal mean diameter in CAM6 are underestimated compared 
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with in situ observations, possibly due to weaker aerosol indirect effects and insufficient amounts of 
ice particle growth in the model (Patnaude et al., 2021). Therefore, to increase ice mass concentration 
and the amount of supercooled liquid water, further modifications are recommended for CNT, CLUBB 
and MG2 parameterizations, INP number concentrations and ice particle growth.

Caveats exist in this study due to the limitations in observational capabilities and the nature of nu-
merical modeling. Remote sensing observations, while quality controlled, are subject to the influences 
of attenuation and sensitivity limits. Several methods are therefore used to evaluate simulated cloud 
phase, by including (Figures  8 and  9;  S1–S3) or excluding the unknown phase (Figures  10 and  11) 
in the comparison. Radiosondes are limited by the number of releases possible, which provide fewer 
samples than ground-based remote sensing observations when analyzing collocated thermodynamic 
conditions and cloud characteristics. Furthermore, CAM6 was run on a coarser horizontal grid spacing 
than the observations. As the simulation was nudged toward MERRA-2 reanalysis data for temperature 
and 2-D horizontal wind, CAM6 temperature biases were found to largely originate from reanalysis 
data temperature biases. More evaluation on the representativeness of reanalysis data in Antarctica is 
out of the scope of this current work but recommended for future studies. Moreover, observations are 
either averaged to the coarse model grid scale (e.g., Figure 10), or the model output closest in time to 
the observations is repeatedly compared with multiple high-resolution observational data (Figures 8, 
9 and 11). The two methods show similar results with each other, demonstrating the robustness of the 
model comparison results.

When comparing cloud fraction and cloud phase, the definitions of these quantities in the observations 
are dependent upon spatial scales, which may also affect the model evaluation results. For example, 
the combined lidar and radar retrievals at 10-s resolution show cloud fraction of either 0 or 1, while 
the averaged observations can have cloud fraction ranging from 0 to 1 (i.e., calculated as the number 
of in-cloud samples divided by the total number of samples at each pressure level). In addition, cloud 
phase of 10-s resolution observations is defined as either ice or liquid-containing phase, while by aver-
aging observations onto coarser model grid scale, three cloud thermodynamic phases (i.e., ice, liquid 
and mixed) can be defined. Previous studies of in situ observations showed that mixed phase occur-
rence frequency increases when averaging the observations onto coarser spatial scales (D’Alessandro 
et al., 2019; Yang et al., 2020). Instrument sensitivities can also significantly affect the derived mixed-
phase cloud occurrence frequency, as demonstrated by comparisons between spaceborne and ground-
based radar observations (e.g., Silber et al., 2021). Thus, one should caution the spatial dependency 
of cloud phase distribution when comparing observations and model simulations at different spatial 
resolutions.

Representations of cloud characteristics in CAM6 can subsequently affect radiative forcing and precip-
itation. Cloud phase analysis shows ice and liquid phase occurrence frequencies normalized by total 
in-cloud samples being underestimated and overestimated, respectively. Given the fact that ice phase is 
more likely to sediment due to larger particle sizes compared with supercooled liquid water, the under-
estimation of ice phase in CAM6 may lead to an overestimation of cloud lifetime and an underestima-
tion of precipitation. Quantifications of the impacts of these cloud fraction and cloud phase biases on 
cloud radiative effects and precipitation over Antarctica are suggested for future work. Overall, this work 
demonstrated several methods to facilitate the comparisons between various types of observations and 
GCM simulations by reconciling their differences in horizontal and vertical resolutions. The presented 
model biases in cloud characteristics and thermodynamic conditions can be used as a guidance for future 
parameterization development in the GCMs, specifically for extremely dry and cold conditions seen in 
the Antarctic region.

Data Availability Statement
Observation data are available from ARM Data Discovery (https://adc.arm.gov/discovery/). The CAM6 
nudged simulation output around McMurdo Station are archived at data.mendeley.com under DOI: 
http://dx.doi.org/10.17632/x6n4r3yxb2.1.

https://adc.arm.gov/discovery/
http://data.mendeley.com
http://dx.doi.org/10.17632/x6n4r3yxb2.1
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Erratum
Figure 1 has been updated since this paper originally published. The color bar for Figure 1C has been up-
dated to include the previously missing gray bar. The gray color shows unknown phase. The updated figure 
may be considered the version of record.
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