1,369 research outputs found

    Hydrodynamical Neutron-star Kicks in Electron-capture Supernovae and Implications for the CRAB Supernova

    Full text link
    Neutron stars (NSs) obtain kicks of typically several 100 km/s at birth. The gravitational tug-boat mechanism can explain these kicks as consequences of asymmetric mass ejection during the supernova (SN) explosion. Support for this hydrodynamic explanation is provided by observations of SN remnants with associated NSs, which confirm the prediction that the bulk of the explosion ejecta, in particular chemical elements between silicon and the iron group, are dominantly expelled in the hemisphere opposite to the direction of the NS kick. Here, we present a large set of two- and three-dimensional explosion simulations of electron-capture SNe, considering explosion energies between ~3x10^49 erg and ~1.6x10^50 erg. We find that the fast acceleration of the SN shock in the steep density gradient delimiting the O-Ne-Mg core of the progenitor enables such a rapid expansion of neutrino-heated matter that the growth of neutrino-driven convection freezes out quickly in a high-mode spherical harmonics pattern. Since the corresponding momentum asymmetry of the ejecta is very small and the gravitational acceleration by the fast-expanding ejecta abates rapidly, the NS kick velocities are at most a few km/s. The extremely low core compactness of O-Ne-Mg-core progenitors therefore favors hydrodynamic NS kicks much below the ~160 km/s measured for the Crab pulsar. This suggests either that the Crab Nebula is not the remnant of an electron-capture SN, but of a low-mass iron-core progenitor, or that the Crab pulsar was not accelerated by the gravitational tug-boat mechanism but received its kick by a non-hydrodynamic mechanism such as, e.g., anisotropic neutrino emission.Comment: 23 pages, 9 figures; revised version accounting for referee and reader comments; accepted by Ap

    Characterization of ore-forming systems - advances and challenges

    Get PDF
    Economically viable concentrations of mineral resources are uncommon among the predominantly silicate-dominated rocks in Earth's crust. Most ore deposits that were mined in the past or are currently being extracted were found at or near Earth's surface, often serendipitously. To meet the future demand for mineral resources, exploration success hinges on identifying targets at depth, which, on the one hand, requires advances in detection and interpretation techniques for geophysical and geochemical data. On the other hand, however, our knowledge of the chain of events that lead to ore deposit formation is limited. As geoscience embraces an integrated Earth systems approach, considering the geodynamic context of ore deposits can provide a step change in understanding why, how, when and where geological systems become ore-forming systems. Contributions to this volume address the future resources challenge by: (i) applying advanced microscale geochemical detection and characterization methods; (ii) introducing more rigorous 3D Earth models; (iii) exploring critical behaviour and coupled processes; (iv) evaluating the role of geodynamic and tectonic setting; and (v) applying 3D structural models to characterize specific ore-forming systems

    Linkage Evidence for a Two-Locus Inheritance of LQT-Associated Seizures in a Multigenerational LQT Family With a Novel KCNQ1 Loss-of-Function Mutation

    Get PDF
    Mutations in several genes encoding ion channels can cause the long-QT (LQT) syndrome with cardiac arrhythmias, syncope and sudden death. Recently, mutations in some of these genes were also identified to cause epileptic seizures in these patients, and the sudden unexplained death in epilepsy (SUDEP) was considered to be the pathologic overlap between the two clinical conditions. For LQT-associated KCNQ1 mutations, only few investigations reported the coincidence of cardiac dysfunction and epileptic seizures. Clinical, electrophysiological and genetic characterization of a large pedigree (n = 241 family members) with LQT syndrome caused by a 12-base-pair duplication in exon 8 of the KCNQ1 gene duplicating four amino acids in the carboxyterminal KCNQ1 domain (KCNQ1dup12; p.R360_Q361dupQKQR, NM_000218.2, hg19). Electrophysiological recordings revealed no substantial KCNQ1-like currents. The mutation did not exhibit a dominant negative effect on wild-type KCNQ1 channel function. Most likely, the mutant protein was not functionally expressed and thus not incorporated into a heteromeric channel tetramer. Many LQT family members suffered from syncopes or developed sudden death, often after physical activity. Of 26 family members with LQT, seizures were present in 14 (LQTplus seizure trait). Molecular genetic analyses confirmed a causative role of the novel KCNQ1dup12 mutation for the LQT trait and revealed a strong link also with the LQTplus seizure trait. Genome-wide parametric multipoint linkage analyses identified a second strong genetic modifier locus for the LQTplus seizure trait in the chromosomal region 10p14. The linkage results suggest a two-locus inheritance model for the LQTplus seizure trait in which both the KCNQ1dup12 mutation and the 10p14 risk haplotype are necessary for the occurrence of LQT-associated seizures. The data strongly support emerging concepts that KCNQ1 mutations may increase the risk of epilepsy, but additional genetic modifiers are necessary for the clinical manifestation of epileptic seizures

    Case study: Near real-time thermal mapping to support firefighting and crisis management

    Get PDF
    Hot and dry summers have led to an increase in forest fires both concerning num-bers and intensity in north-eastern Germany in the last years. In the project FireSense the German Aerospace Center (DLR) has adapted its sensor system MACS (Modular Airborne Camera System) with a set of thermal mid- and long wave infrared (MWIR and LWIR) cam-eras to detect, monitor and quantify high temperature events (HTE) like forest fires. Ground-based, airborne and spaceborne measurements over fire-experiments are synchronized for cross-validation of the systems and to test the developed workflows. In summer 2019 gas flaring tests were conducted in cooperation of DLR and the Federal In-stitute for Material Research and Testing (BAM), parallel several large forest fires in Bran-denburg (Lieberose) and Mecklenburg-Vorpommern (Lübtheen) developed. In coordination with the crisis management group (local authorities, firefighters, armed forces, federal po-lice) to get the permits MACS conducted 3 flights over the fires in altitudes between 6000 (sunny) down to 3500 ft (under clouds), Lübtheen was covered twice, on July 2 and July 4, when the fire was already under control. Synchronously firefighting helicopters operated close to ground, also delivering videos of the fires for visual interpretation. To get both background temperatures for orientation and landscape features and also infor-mation about the fires within one data set, a broad calibration range for the LWIR camera was commanded. Using synchronized position- and orientation data of MACS with given calibration data and a Digital Terrain Model, direct geocoding and the processing of near real-time mosaics was possible using the DLR workflow even without post-processing. The accuracy was sufficient for planning purposes. Geo-tiff maps were delivered shortly after landing within less than three hours. The real-time capabilities of the system could not be used as the flights were conducted on very short notice and the radio link was not installed. The thermal data were delivered as false color heat maps. They show the thermal anomalies very well, clearly discriminating burning area, recently burnt area and unaffected forest. In the RGB data the ground fires are rarely visible as they are covered by and almost did not affect the closely standing crowns. The spread of the fires can be seen in the overlapping re-gions of adjacent flight lines. Data exchange and use of the data proved to be difficult due to limited data rates and IT in-frastructure in the command and situation center in the field, sometimes taking more time than the acquisition and processing. This reduces the practical benefit for the data in the field. For future planned experiments for real-time mapping of forest fires this will be one of the main points to improve the latency of the data transfer to the control center ideally by us-ing a live data link and to optimize the coordination with the control center. Further activi-ties will be coordinated by the Helmholtz Innovation Lab OPTSAL (Optische Technologien für Situationserfassung im Sicherheitsbereich), which was started at DLR in 2020. In OPTSAL hard- and software solutions are developed and activities concerning situational awareness for safety and security are coordinated with industry and authorities

    Vorstellung eines photogrammetrischen Kamerasystems für UAV‘s mit hochgenauer GNSS/INS Information für standardisierte Verarbeitungsverfahren

    Get PDF
    Es werden die ersten Ergebnisse eines metrischen Luftbildkamerasystems für unbemannte Fluggeräte unter 5kg Abflugmasse vorgestellt. Der aktuelle Prototyp basiert auf dem vom DLR entwickelten „Modular Airborne Camera System“ (MACS) und dient als Flugmuster für die Verifizierung des Konzepts unter realen Einsatzbedingungen. Dazu wurde das Ka-merasystem geometrisch kalibriert und ein erster Bildmessflug photogrammetrisch ausge-wertet. Die Bewertung erfolgt anhand der Aerotriangulation aller Luftbildaufnahmen unter Verwendung von 32 Kontrollpunkten

    Integration of an Optical Ring Resonator Biosensor into a Self-Contained Microfluidic Cartridge with Active, Single-Shot Micropumps

    Get PDF
    While there have been huge advances in the field of biosensors during the last decade, their integration into a microfluidic environment avoiding external tubing and pumping is still neglected. Herein, we show a new microfluidic design that integrates multiple reservoirs for reagent storage and single-use electrochemical pumps for time-controlled delivery of the liquids. The cartridge has been tested and validated with a silicon nitride-based photonic biosensor incorporating multiple optical ring resonators as sensing elements and an immunoassay as a potential target application. Based on experimental results obtained with a demonstration model, subcomponents were designed and existing protocols were adapted. The newly-designed microfluidic cartridges and photonic sensors were separately characterized on a technical basis and performed well. Afterwards, the sensor was functionalized for a protein detection. The microfluidic cartridge was loaded with the necessary assay reagents. The integrated pumps were programmed to drive the single process steps of an immunoassay. The prototype worked selectively, but only with a low sensitivity. Further work must be carried out to optimize biofunctionalization of the optical ring resonators and to have a more suitable flow velocity progression to enhance the system’s reproducibility.The authors would like to thank the European Union for their funding of the project PBSA “Photonic Biosensor for Space Application” within the FP7-program (FP7 program Grant Agreement No. 312942-PBSA. We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI

    Plasma functionalization of polycarbonaturethane to improve endothelialization—Effect of shear stress as a critical factor for biocompatibility control

    Get PDF
    Medical devices made of polycarbonaturethane (PCU) combine excellent mechanical properties and little biological degradation, but restricted hemocompatibility. Modifications of PCU might reduce platelet adhesion and promote stable endothelialization. PCU was modified using gas plasma treatment, binding of hydrogels, and coupling of cell-active molecules (modified heparin, anti-thrombin III (ATIII), argatroban, fibronectin, laminin-nonapeptide, peptides with integrin-binding arginine-glycine-aspartic acid (RGD) motif). Biocompatibility was verified with static and dynamic cell culture techniques. Blinded analysis focused on improvement in endothelial cell (EC) adhesion/proliferation, anti-thrombogenicity, reproducible manufacturing process, and shear stress tolerance of ECs. EC adhesion and antithrombogenicity were achieved with 9/35 modifications. Additionally, 6/9 stimulated EC proliferation and 3/6 modification processes were highly reproducible for endothelialization. The latter modifications comprised immobilization of ATIII (A), polyethyleneglycole-diamine-hydrogel (E) and polyethylenimine-hydrogel connected with modified heparin (IH). Under sheer stress, only the IH modification improved EC adhesion within the graft. However, ECs did not arrange in flow direction and cell anchorage was restricted. Despite large variation in surface modification chemistry and improved EC adhesion under static culture conditions, additional introduction of shear stress foiled promising preliminary data. Therefore, biocompatibility testing required not only static tests but also usage of physiological conditions such as shear stress in the case of vascular grafts

    Stable successional patterns of aquatic hyphomycetes on leaves decaying in a summer cool stream.

    Get PDF
    The colonization of leaf litter (Alnus glutinosa) by aquatic hyphomycetes was studied in a summer cool stream of the French Pyrenees. In spite of the rapid decomposition of leaves, the fungal community exhibited a characteristic successional pattern with three phases. The initial colonization stage was defined by a dense sporulation of the five species Tetrachaetum elegans, Lemonniera aquatica, L. centrosphaera, L. terrestris, and in particular Flagellospora curvula. After four weeks of colonization, a mature community had established. It was characterized by high species diversity and peak fungal biomass, which was measured as ergosterol content, and coincided with about 50 % loss in leaf mass. With leaf decay progressing further, diversity diminished concomitant with a slight reduction in fungal biomass and a sharp decrease in the rate of conidial production. Typical species of this late successional stage were Clavatospora longibrachiata, Heliscella stellata and Goniopila monticola. This successional pattern proved to be stable both within the period of leaf fall in one year and between two successive years. Between-seasons differences were quite small as well, the striking lack of species replacement apparently being due to not exceeding the threshold temperature of 16-18 °C as previously defined in literature. In spite of this general stability in community structure, correspondence analysis discriminated the communities on leaf packs with equal exposure times according to season, with the cyclical arrangement of leaf packs on the principal factorial plane reflecting the seasonal cycle. The colonization of fresh (non-dried) leaf litter by aquatic hyphomycetes was delayed compared to air-dried litter; however, the lead diminished with progressing leaf decay, resulting in nearly identical communities on fresh and dried leaves after four weeks of decomposition

    Breaking new ground in mapping human settlements from space -The Global Urban Footprint-

    Full text link
    Today 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70 percent will be living in cities. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development. A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4 arcsec (12m\sim12 m) that provides - for the first time - a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework - the Urban Footprint Processor (UFP) - that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3m ground resolution collected in 2011-2012. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. Generally, the GUF layer achieves an overall absolute accuracy of about 85\%, with observed minima around 65\% and maxima around 98 \%. The GUF will be provided open and free for any scientific use in the full resolution and for any non-profit (but also non-scientific) use in a generalized version of 2.8 arcsec (84m\sim84m). Therewith, the new GUF layer can be expected to break new ground with respect to the analysis of global urbanization and peri-urbanization patterns, population estimation or vulnerability assessment
    corecore