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Abstract

Medical devices made of polycarbonaturethane (PCU) combine excellent mechanical properties and little biological

degradation, but restricted hemocompatibility. Modifications of PCU might reduce platelet adhesion and promote

stable endothelialization. PCU was modified using gas plasma treatment, binding of hydrogels, and coupling of cell-

active molecules (modified heparin, anti-thrombin III (ATIII), argatroban, fibronectin, laminin-nonapeptide, peptides

with integrin-binding arginine-glycine-aspartic acid (RGD) motif). Biocompatibility was verified with static and dynamic

cell culture techniques. Blinded analysis focused on improvement in endothelial cell (EC) adhesion/proliferation, anti-

thrombogenicity, reproducible manufacturing process, and shear stress tolerance of ECs. EC adhesion and antithrom-

bogenicity were achieved with 9/35 modifications. Additionally, 6/9 stimulated EC proliferation and 3/6 modification

processes were highly reproducible for endothelialization. The latter modifications comprised immobilization of ATIII

(A), polyethyleneglycole-diamine-hydrogel (E) and polyethylenimine-hydrogel connected with modified heparin (IH).

Under sheer stress, only the IH modification improved EC adhesion within the graft. However, ECs did not arrange

in flow direction and cell anchorage was restricted. Despite large variation in surface modification chemistry and

improved EC adhesion under static culture conditions, additional introduction of shear stress foiled promising prelim-

inary data. Therefore, biocompatibility testing required not only static tests but also usage of physiological conditions

such as shear stress in the case of vascular grafts.
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Introduction

Polycarbonateurethanes (PCUs) have been used for
producing biostable implantable medical devices (e.g.
artificial blood vessels, small-diameter vascular grafts)
as they provide relatively beneficial thromboresistance,
biocompatibility and mechanical properties similar to
the polyether-based polyurethanes.1–4 However, throm-
bus formation remained a critical risk factor.5–7 An
effective way to improve hemocompatibility of PCU
is to optimize its material surface but not significantly
change their intrinsic mechanical properties.
Modification of the polyurethane surface chemistry
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combining reduced platelet adhesion/activation and
increasing endothelial attachment would be an
attractive task.

It is very attractive to activate polymer surfaces
using gas plasma treatment.8–13 In this context, it was
shown that nitrogen (N2) plasma treatment enriched
the surface with nitrogen species,9,10 and thereby
reduced platelet adhesion, activation, and aggrega-
tion.9,11 In addition, N2 plasma activation promoted
adhesion and proliferation of fibroblasts and
osteoblasts onto chitosan membranes or biodegradable
polybutylene succinate surfaces.12,13 Furthermore, bio-
compatible hydrogels are generating growing interest in
the community of tissue engineering because of their
mechanical and chemical versatility and cell compati-
bility based on biomimicry of the extracellular
matrix.14,15 For example, polyethylene glycol (PEG) is
one of the most widely investigated hydrogels,16 that
allowed adhesion of smooth muscle cells for improve-
ment of cardiovascular tissue engineering applica-
tions.17 Furthermore, PEG-diamines were used as
branch molecules in the network which were linked to
cell-active molecules.18 Other interesting hydrogels in
tissue engineering approaches are polyethyleneimine
composites19,20 and carboxymethyl dextran21. They
are characterized by low cytotoxicity, simple process-
ing, and variable applicability.19 Additional immobil-
ization of biomolecules on biomaterial surfaces has
been also proven to be a very effective method for con-
siderable improvement of blood compatibility or
increasing cell attachment and proliferation.22

Covalent binding of fibronectin23 or RGD peptides24,25

as well as a laminin-nonapeptide26 improved
integrin-mediated cell adhesion of endothelial cells or
progenitor cells. Other strategies such as binding of
anticoagulants like heparin,27 phosphorylcholine,28 or
Argatroban29 pursued the aim to reduce platelet adhe-
sion, activation and aggregation.

Routinely, biocompatibility testing only used static
culture methods according to international standard
ISO-10993 requirements.8,11,12,22–25,28 In cardiovascular
tissue engineering, endothelial cell attachment to and
retention on an appropriate scaffold is particularly
important because of the high fluid shear forces applied
to the graft lumen upon implantation within the arterial
tree. Therefore, bioreactors and perfusion flow systems
were used to endothelialize the graft lumen, to precon-
dition the cells to blood flow and to mimic the physio-
logical fluid-induced cyclical shear stress derived from
blood flow through the vessels.14,22,30 In the present
study, static methods were introduced to analyze the
bio- and hemocompatibiltiy of 35 different chemical
modifications of PCU. The most promising modifica-
tions with low platelet adhesion and improved endothe-
lial cell adhesion were analyzed in a bioreactor under

pulsatile flow to evaluate the effect of shear stress on the
integrity of the cell monolayer.

Materials and methods

Materials

Disks (area, 0.3 cm2) and vascular grafts (length, 15 cm;
diameter, 0.6 cm; wall thickness, 0.5mm) made of PCU
were purchased from DUALIS (Seefeld, Germany).
The PCU-samples were cleaned (ethanol, p.a.) and air
dried before processing.

N2 and carbon dioxide (CO2) were purchased from
Linde (ultrapure grade, 99.998%; Ludwigshafen,
Germany). Laminin-nonapeptide (CDPGYJGSR),
short (GRGDSPK) and long (GCGYGRGDSPG)
RGD-peptides were obtained from GenScript
Corporation (Piscataway, NJ), Antithrombin III
(ATIII, Kybernin�P) from CLS Behring (Marburg,
Germany), Argatroban (Argatra�) from Mitsubishi
Pharma (Düsseldorf, Germany), human fibronectin
from BD Biosciences (Heidelberg, Germany), branched
polyethyleneimine (PEI) and poly(ethylene glycol) bis(a-
mine), (PEG-diamine, MW10,000) from Sigma-Aldrich
(Munich, Germany). Unless otherwise indicated, chem-
icals were purchased from Sigma-Aldrich or Merck
(Darmstadt, Germany). Water was deionized.
Carbonate buffer (c-buffer) (0.1M, pH 8.4) was pre-
pared freshly. Carboxymethyl-dextran (CM-Dex) was
prepared with 1M bromoacetic acid as described ear-
lier.31 Heparin was modified by dissolving heparin
(0.3%) in icy water, spiked with sodium nitrite (0.4M),
acidified with hydrogen chloride (pH 2.7), and stirred
(2h, 0�C). After adjustment to pH 7.0, the solution
was filled with twice the volume of 2% sodium chloride
(NaCl, in ethanol) and stored for 40h (4�C). Crystals
were harvested, dried in vacuum and stored at 4�C.

Surface modifications

Figure 1 presents all analyzed surface modifications
using different manufacturing processes (Argatroban,
Ar; ATIII, A; fibrinogen, F; Laminin-nonapeptide, L;
short, Rs, and long, Rl, RGD-peptides). Due to blinded
study design and block by block biological testing, not
all molecules were immobilized onto each activated
surface.

Procedure 1. All PCU-samples were plasma treated32

using a Plasmabrush� (Reinhausen Plasma, Germany).
The plasma chamber was thoroughly purged with a con-
tinuous flowofN2 (20NL/min; voltage, 4500V) andCO2

(1.5NL/min). Before activation, diskswere fixed on glass
slides, and grafts were wrapped in grounded aluminum
foil. Discs were treated for 7 s each. The lumen of grafts
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was treated with N2-plasma from one end and CO2 gas
from the opposite site for 20 s once. The distance of the
nozzle to the PCU was 0.5 cm. After 45min on air,
plasma-activated PCU-samples (paPCU) were incubated
with 0.9%NaCl solution (2h, 50�C),washed inwater and
immediately modified.

Procedure 2. NHS/EDC chemistry (N-hydroxysuccini-
mide/1-ethyl-3-(3-dimethylaminopropyl) carbodii-
mide)33 was used to activate modified PCU-samples
(paPCU, CM-Dex immobilized surfaces). Samples
were incubated with NHS/EDC (0.1M/0.1M) in aque-
ous media (room temperature, RT, 20min), rinsed with
water and processed.

Procedure 3. A (4 IU/mL), Ar, L, andF (each, 0.4mg/mL)
and CM-Dex (4mg/mL) in c-buffer were incubated in
NHS/EDC (0.1M/0.2M) (20min, RT), and filled up to
the 4-fold volume of c-buffer. Modified PCU samples
were incubated in A, Ar, L, and F solutions (19 h, 4�C)
or CM-Dex solution (2h, RT).

Procedure 4. Sodium cyanoborhydride (NaBH3CN) was
used to immobilize modified heparin (H) (see above).
Modified heparin (1mg/mL) was dissolved in
NaBH3CN (3mg/mL) in 0.15M NaCl and incubated
with modified PCU-samples (2 h, 50�C). After repeated
short-time rinsing with water, the samples were dried
and stored at 4�C until biological testing.
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Figure 1. Manufacturing of different chemical modifications of PCU.

PCU was modified using different procedures (1–5, grey encircled) to introduce hydrogels (PEI, polyethyleneimine; PEG, poly(ethylene

glycol) bis(amine)), cell-active molecules (Ar, argatroban; A, Antithrombin III; F, fibrinogen; L, laminin-nonapeptide; Rs, Rl, short and

long RGD-peptides; H, modified heparin), and carboxymethyl-dextran (CM-Dex). End products are framed at the end of the con-

necting lines. For details of the procedures and composition of the end products see ‘‘Materials and methods’’ section.
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Procedure 5. Tetraethylorthosilicate (TEOS) was used as
a precursor to polymerize on PCU-samples via sol-gel
process.34 TEOS gas was generated by heating up to
80�C and fed in with Argon gas carrier (10 NL/min;
4500V) into the argon-plasma using the Plasmabrush�

(S). Disks were treated (3� 7 s). Immediately after
polymerization of TEOS, disks were continuously
moved in 10% 1,6-hexamethylenediisocyanate35 in
diethylether (72 h, RT) followed by diethylether wash-
ing (5 h) and repeated c-buffer washings. Thereafter, disks
were incubated with A (1 IU/mL), modified heparin, Ar,
L, and F (each, 0.1mg/mL) (dissolved in c-buffer) over
night at 4�C (SA, SH, SAr, SL, SF).

Hydrogels of PEI (I) and PEG (E) were produced by
crosslinking PEI (3mg/mL in c-buffer) (2 h, RT) and
PEG (1mg/mL, in 0.6M potassium sulfate and c-
buffer) (2 h, 50�C)23 with activated PCU samples (pro-
cedure 2). For immobilization of CM-Dex, CM-Dex
(4mg/mL) was activated (procedure 3) and incubated
with paPCU (D) and E-modified PCU (ED) (2 h, RT).

Covalent binding of cell-active molecules. The end product
of chemical modification strategies consisted of cova-
lent binding of argatroban (Ar), ATIII (A), fibrinogen
(F), laminin-nonapeptide (L), short (Rs), and long (Rl)
RGD-peptides. Molecules were either dissolved
in c-buffer (A (1 IU/mL), Ar, L, Rs, Rl, F (each,
0.1mg/mL)) and incubated with activated paPCU, acti-
vated ED-modified PCU, activated D-modified PCU
(procedure 2) (19 h, 4�C) [Ar, A, F, L, Rs, Rl, EDAr,
EDA, EDF, EDL, EDRs, EDRl, DA, DF], or activated
using procedure 3 and incubated (19 h, 4�C) with E- and
I-modified PCU-samples [EAr, EA, EF, EL, IA, IF].
Heparin was immobilized onto paPCU, S-, E-, ED-,
and I-modified PCU samples using procedure 4 [H,
EH, EDH, IH].

Each end product (framed within Figure 1) was thor-
oughly rinsed with water, dried, and stored at 4�C until
blinding and biological testing. Blinded test samples
were washed (ethanol, 70%; sterile PBS), and fixed
into 96-well microplate (Nunc�, Wiesbaden,
Germany) with sterile steel rings. Tissue-cultured poly-
styrene (TCP) (Nunc) was the reference for biological
testing.36

Cytocompatibility

Human saphenous vein ECs (HSVEC) were cultured in
growth medium with serum (GMS, Medium 199, 10%
fetal calf serum, L-Glutamine (PAA Laboratories,
Pasching, Austria), Supplement Pack (PromoCell,
Heidelberg, Germany)).36 Informed consent was
obtained from cell donors. The protocol was approved
by the local human ethics committee (no. 99/133). For
adhesion (proliferation) tests, 66,000 (17,000) HSVECs/

cm2 were seeded onto non-coated test samples or fibro-
nectin-coated (10 mg/mL) TCP for 24 h (3–7 days). Cells
were fed with fresh GMS (days 3 and 5), harvested by
addition of trypsin/EDTA (Promocell) on days 3, 5,
and 7, and counted (CASY-TTC, Roche, Mannheim,
Germany).

Hemocompatibility

Human citrated venous blood was drawn from male
healthy volunteers with written consent as per insti-
tutional ethics guidelines (no. 10-101-0159), and cen-
trifuged (300 g, 15min, 37�C). Platelet-rich plasma
(PRP) was transferred into a polypropylene syringe
containing 10% aqueous citrate dextrose, and
centrifuged again. Platelets were counted (Neubauer
haemocytometer), double-stained (monoclonal anti-
CD41-FITC/anti-CD62P-APC antibodies, BD
Biosciences, Erembodegem, Belgium) (24 h, 4�C) and
analyzed using flow cytometry. Only PRP preparations
with <10% CD41þ/CD62Pþ platelets were used for
platelet adhesion tests. PRPs (5� 107platelets/0.3 cm2)
were coincubated with test samples (30min, 37�C).
Non-adherent platelets were removed by careful wash-
ing with PBS. Adherent platelets were fixed (10% par-
aformaldehyde, RT, 10min), permeabilized (0.5%
TritonX-100 in PBS, RT, 5min), washed with PBS,
stained with rhodamine-phalloidin (Molecular Probes,
ThermoFisher, Darmstadt, Germany) (100 nM, RT,
30min), and visualized using fluorescence microscopy
(Leica DMRBE, Biberach, Germany). Cell density was
estimated using a platelet score (1, <20%; 2, 20–50%;
3, >50% surface coverage) (Figure 2(a) to (c)). Platelet
score was evaluated in independent experiments using
five different donors by three technicians in a blinded
fashion. A mean platelet score <1.5 was defined as
sufficient hemocompatible.

Effect of shear stress

Modifications with the best EC adhesion properties were
used to analyze the effect of shear stress on cell adhesion
in a bioreactor (DUALIS). Details for bioreactor
processing see Riescher et al.37 HSVECs (2–6� 106)
were resuspended in 2mL of GMS and added into the
modified grafts. Fibronectin-coated grafts made of
Elastollan�1180A (BASF, Ludwigshafen, Germany)
were used as a positive control.37 The grafts were perfused
with a pulsatile flow for 72h. Then, grafts were removed
from the bioreactor, fixed with paraformaldehyde, and
stained with 40,6-Diamidin-20-phenylindol-dihydrochlor-
ide (DAPI). The grafts were separated into pieces of 1 cm
of length, opened longitudinally and fixed on a glass slide.
The nuclei of the adherent cells were visualized with
the fluorescence microscope (10� magnifications) and
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quantified using ImageJ software. Other sections of
the grafts were stained with rhodamine-phalloidin (see
above) and with fluorescein isothiocyanate (FITC)-
conjugated monoclonal anti-human CD31 antibody/
Ancell, Bayport, MN). Furthermore, a third part of the
grafts was used for scanning electron microscopy (SEM)
as described by Lehle et al.38

Statistics

Data were presented as mean� standard deviation
(SD). Due to non-normality of the data, the
Wilcoxon-Signed-Rank-Test (Sigma-Stat, SPSS,
Chicago, IL) was used after passing the Friedman-
Test (Sigma-Stat, SPSS, Chicago, IL). p-Values� 0.05
were considered significant. All analyses in the static
cell culture were done with six EC and five platelet
donors. Other details see text.

Results

Screening of different chemical modifications

Platelet adhesion (Figure 3(a)) was high for TCP and
untreated PCU with a platelet score of 2.9� 0.3 and
2.2� 0.5, respectively. After chemical modification of
PCU, 15 different strategies (43%) presented a signifi-
cant reduction of the mean platelet score (1.3� 0.6,

p� 0.001 vs. untreated PCU) (white bars, Figure 3(a)).
As shown in Figure 3(b), TCP allowed high EC coverage
(100%), while the cell density was significantly reduced
for untreated PCU (48� 13% of TCP, p� 0.001). Cell
adhesion onto PCU was significantly improved in 19
modifications (54%) (white bars, Figure 3(b)) (p� 0.05
vs. untreated PCU). Nine modifications (26%) unified
both anti-thrombogenic and EC-adhesive characteris-
tics (shaded boxes, Figure 3(a) and (b)).

As shown in Figure 3(a) and (b), plasma activation
of PCU (paPCU) did not reduce platelet adhesion
(platelet score >2, p> 0.05) but significantly increased
EC adhesion (p¼ 0.024). However, no additional treat-
ment enabled a further increase in EC density com-
pared to paPCU. Only the direct coupling of heparin
(H) improved EC coverage; however, without statistical
significance (p¼ 0.063, compared to paPCU).
Surprisingly, binding of fibronectin to PEI hydrogels
even reduced EC density (IF). Polymerization of
TEOS and further modifications (S, SH, SAr, SA, SF,
SL) did not affect EC-adhesive properties, but instead
increased platelet score (>2). Therefore, this procedure
was not pursued further. Further contemplation
focused on anti-thrombogenic surfaces (platelet score
<1.5, Figure 3(a)). PEG-based hydrogel coatings (E,
ED) significantly reduced thrombogenicity (E,
p¼ 0.009; ED, p¼ 0.029; compared to untreated
PCU). Coupling of PEI (I) and CM-Dex (D) did not

(a)

(b) (c)

Figure 2. Estimation of the platelet score.

Different amounts of isolated platelets ((a) 6� 106; (b) 2.5� 107; (c) 5� 107 per 0.3 cm2) were seeded onto tissue-cultured poly-

styrene (TCP) for 30 min, fixed with formaldehyde, permeabilized, stained with rhodamine-phalloidin and visualized using fluorescence.

Platelet score was defined as surface coverage of stained platelets: (a) platelet score 1, <20%; (b) platelet score 2, 20–50%; (c) platelet

score 3, >50% surface coverage.
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improve anti-thrombogenicity (platelet score> 1.5).
Covalent binding of ATIII—A, EA, EDA, IA,
DA—improved anti-thrombotic properties of
untreated PCU (platelet score< 1.5) (each, p� 0.001
compared to untreated PCU). Comparing precondi-
tioning treatment with respective ATIII modifications
showed a significant reduction for A, IA, and DA
(paPCU vs. A, p¼ 0.004; I vs. IA, p¼ 0.010; D vs.
DA, p¼ 0.002). A benefit in anticoagulant function of
Argatroban (Ar, EAr, EDAr) and modified heparin
(H, EH, EDH, IH) failed. Additional binding of
EC-adhesive proteins/peptides such as fibronectin did
not affect the anti-thrombotic properties of respective
pretreated PCUs (F, EF, EDF, IF, DF).

Reproduction of the manufacturing process

Eleven of thirty-five modifications were tested for
reproducibility of the manufacturing process.
Selection criteria included (a) anti-thrombogenicity
(Figure 3(a)), (b) easy manufacturing, (c) preservation
of EC-adhesiveness (Figure 3(b)). Manufacturing pro-
cess was repeated three times in an independent

fashion. As shown in Table 1, platelet adhesion was
highly variable for different preparations of A, E, EF,
ED, EH, and DA. Reproduction of low platelet scores
was documented for EA, EL, EDA, EDRs, and IA
(foregrounded in grey, Table 1). As shown in above,
EC adhesiveness was only adequate for 7/11 selected
modifications. EL, EDRs and IH showed high variabil-
ity in EC coverage. IA prevented EC adhesion. These
characteristics were reproducible for A, E, IH (main-
tenance of EC adhesiveness), and IA (prevention of EC
adhesion) (foregrounded in grey, Table 1).

EC proliferation

Improved cytocompatibility of biomaterials was also
defined by an increase in the proliferative activity of EC
(Figure 4). Highest cell density was detected for TCP
(n¼ 8, p� 0.001). Instead, cell density was by a factor of
2 significantly lower on untreated PCU (p¼ 0.001).
Additionalmodificationseithercompletely suppressedpro-
liferation (EA, ED, EDA, EDRs, IA), or permitted an
increase in cell count over 5 days but without a synergistic
effect compared tountreatedPCU(A,E,EF,EL, IH,DA).
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Figure 3. Biological screening of different chemical modifications.

Different chemical modifications (for abbreviations and manufacturing protocol see ‘‘Materials and methods’’ section) were tested for

their (a) hemocompatibility and (b) cytocompatiblilty. Platelet adhesion was estimated via platelet score (5 donors). Endothelial cells (8

donors) were cultivated for 24 h and counted with CASY-TTC. Cell counts were specified in % of TCP (tissue-cultured polystyrene).

Solid black line, untreated PCU; dotted black line, TCP; filled boxes, no significant alteration compared to untreated PCU; white

boxes, significant reduction of platelet score (<1.5) or increase of EC density compared to untreated PCU; shaded boxes, concerning

modifications combined both anti-thrombogenicity and endothelial cell adhesion; arrows, these modifications were used to demon-

strate reproducibility of the manufacturing process. Data are presented as mean and standard deviation.
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Effect of shear stress

Modifications A, E, and IH combined benefits such as
adequate EC adhesion and proliferation, and satisfac-
tory reproducibility. These properties might enable cell
seeding of vascular synthetic grafts in a bioreactor

under pulsatile flow.29 After 3 days under shear stress
(maximum flow, 600–800mL/min; laminar flow; shear
force, 6 dyn/cm2), cell density on fibronectin-coated
Elastollan� grafts (positive control) was significantly
higher than on untreated PCU grafts (Figure 5(a)).
Nuclei from adherent cells on Elastollan� and
untreated PCU showed an oval shape. The circularity
(relative unit 1 represents a circle) of the nuclei
described its roundness (Figure 5(b)). Adherent EC
on the luminal surface of the Elastollan� graft formed
a complete cell monolayer. The cells arranged in flow
direction (Figure 5(c)). In contrast, pulsatile flow
removed the integrity of adherent EC on untreated
PCU grafts. As a result, cells detached and aggregated.
Only small colonies remained adherent on the polymer
surface.

In six independent experimental set-ups, modified
PCU grafts (A, E, IH) were endothelialized and
exposed to shear stress for 3 days. Immediately after
induction of pulsatile flow EC completely detached
from the surface of E-modified grafts. After 3 days,
no EC was detected on these grafts. In contrast, EC
remained attached on the surface of the other modified
grafts (A, IH). As shown in Figure 6, EC formed a
monolayer with its typical ‘‘cobblestone morphology’’.
However, the cells differed in their size. Modification
IH presented more cells with larger volume (cell swel-
ling) (Figure 6(a)). EC on A-modified grafts were
irregularly arranged (Figure 6(b)). In any case, cell
arrangement in flow direction failed. In addition, the
integrity of the monolayer was disrupted as shown in

Table 1. Reproduction of the manufacturing process of 11 modifications.

EC adhesion (% of TCP) Platelet adhesion (platelet score)

Preparation 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Modification

Untreated 50� 10 48� 13 60� 19 61� 20 2.5� 0.5 2.2� 0.3 2.7� 0.1 2.2� 0.2

A 89� 11 55� 23 66� 23 67� 13 1.3� 0.6 1.7� 0.5 1.8� 0.7 1.8� 0.8

E 76� 9 56� 16 75� 18 56� 18 1.2� 0.5* 1.2� 0.6* 2.3� 0.8 1.2� 0.5*

EA 89� 24 29� 10 65� 9 53� 43 0.9� 0.6 1.1� 0.6 1.6� 0.7 1.2� 0.5

EF 85� 26 46� 13 80� 15 47� 21 1.2� 0.6 1.1� 0.6 1.9� 1.0 1.1� 0.7

EL 81� 31 49� 18 73� 11 56� 13 1.4� 0.5 1.2� 0.6 1.1� 0.6 1.2� 0.7

ED 84� 23& 39� 19 76� 22& 27� 17 1.1� 0.5* 1.1� 0.6* 1.8� 0.7 1.0� 0.7*

EDA 80� 15& 55� 21& 54� 12& 24� 10 1.2� 0.7 0.8� 0.3# 1.2� 0.4 1.0� 0.6

EDRs 69� 18 14� 4*&# 74� 14 31� 5*# 1.5� 0.7 0.6� 0.5#,* 1.5� 1.1 1.0� 0.5

IH 80� 21 74� 18 70� 14 70� 15 1.5� 0.7 1.2� 0.5* 1.8� 0.8 1.1� 0.6*

IA 43� 11 31� 13 19� 10 27� 18 0.9� 0.5& 0.9� 0.5& 0.9� 0.5& 1.7� 0.6

DA 63� 14 27� 27*# 75� 21 42� 24 1.4� 1.0 1.6� 1.0 2.0� 1.0 1.5� 1.3

Data are mean� standard deviation. Abbreviations of the modifications are described in the ‘‘Materials and methods’’ section and Figure 1. Each

preparation (1st to 4th) was done independently in a triple approach.

EC: endothelial cell; TCP: tissue culture polystyrole (reference material).

Statistics: *significant vs. 3rd preparation; #significant vs. 1st preparation; &significant vs. 4th preparation.
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Endothelial cells (17,000 per cm2) were seeded onto tissue-cul-

tured polystyrene (TCP), untreated PCU and 11/35 modified test

samples (for abbreviations and manufacturing protocol see

‘‘Materials and methods’’ section) for 5 days. Cells were counted

and displayed relative to the cell count on the day of seeding

(solid line). ***p� 0.001; **p� 0.01 compared to the cell count

on the day of seeding. ##p¼ 0.001 comparing cell counts on day

5 after seeding on TCP and untreated PCU. Data are presented

as mean and standard deviation from eight cultures.
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representative REM photographs in Figure 6(c). The
median cell density was quantified by computation
of DAPI-stained nuclei per microscopic field
(Figure 6(d)). Median cell density on modifications A
and IH was about half of the positive control (high
variation of cell counts). In detail, only one of six EC
cultures showed good cell attachment on A-grafts, and
three of six EC cultures formed a monolayer on IH-
grafts. There was no difference in the circularity of the
nuclei from cells on Elastollan�, A-graft, and IH-graft.
The shape of the nuclei of remaining cells on E-grafts
was deformed—a sign of absent viability (Figure 6(e)).

Discussion

In this study, a multitude of chemical modifications was
produced to reduce thrombogenicity and to improve

cytocompatibility of PCU. Three of 35 modifications
(A, E, IH) fulfilled biological improvements including
reduced platelet adhesion, stable EC adhesion and pro-
liferation, and a reproducible manufacturing process.
However, under shear stress, the benefit of good EC
adhesion/proliferation and satisfactory reproducibility
disappeared.

Modification of the PCU surface chemistry combin-
ing reduced platelet adhesion/activation and increasing
endothelial attachment whilst preserving the mechan-
ical properties would be an elusive goal. Here, 9/35
modifications met both biological requirements. A pro-
mising approach was the usage of PEG-based hydrogel
coatings alone or conjugated with ATIII and ECM pro-
teins/peptides. PEG is biocompatible with blood and
tissue, nontoxic to cellular systems, nonimmunogenic,
an excellent conjugate for polymer graft materials, and
has been approved by the FDA.39,40 Therefore, PEG
hydrogels have been widely used as a supporting matrix
in almost every field of tissue engineering (nerve, car-
tilage, liver, pancreas, bladder, skin, heart). The
reduced platelet binding capacity resulted from its
inert surface and low protein adsorption.41,42 The add-
itional binding of anticoagulants had no synergistic
anti-thrombogenic effect. Furthermore, the PEG-
based hydrogels allowed EC adhesion. Single coating
with PEG-diamine hydrogels even allowed EC prolifer-
ation. Furthermore, the manufacturing process of
PEG-diamine hydrogel coating to plasma-activated
PCU was highly reproducible. Similar results were pre-
sented for smooth muscle cell attachment to the surface
of the PEG-genipin hydrogels17 and cultivation of
neural cells.43–45 Additional conjugation with ECM
peptides/proteins (e.g. RGD-peptides, fibronectin, lam-
inin) had no synergistic effect on EC adhesion. This was
in contrast to other studies using functionalized PEG
hydrogels. Binding of RGD increased migration/adhe-
sion of smooth muscle cells and allowed the construc-
tion of artificial blood vessels.46,47 We supposed that
the heterogeneous data from functionalized PEG-
hydrogels resulted from different preparation strategies
of PEG-based hydrogels, various conjugation protocols
and the pretreatment and type of the underlying poly-
mer. Nevertheless, the potential of EC adhesion might
further aggravate bacterial contamination to reduce
risk of infection of such blood contacting surfaces.48

Of special interest for improved antithrombogenicity
of cardiovascular devices was the immobilization of
anticoagulants (e.g. heparin). In contrast to other stu-
dies, our binding strategies of heparin and Argatroban
suppressed their anticoagulant function. Independent
of pretreatment process (except silanization), conjuga-
tion with ATIII resulted in a reduced platelet adhesion.
The manufacturing process that ensures active ATIII
function was highly reproducible for PEG-based and
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Figure 5. Effect of shear stress on the cell adhesion into grafts

made of Elastollan� and untreated PCU. Details for usage of the

bioreactor see reference #29 and text. After 3 days under pul-

satile flow, cell density on fibronectin-coated Elastollan� grafts

(positive control) was significantly higher than on untreated PCU

grafts (a). Nuclei from adherent cells were round (circularity; 1
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monolayer. Cells arranged in flow direction (c).
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damine-phalloidin; green CD31-FITC.
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PEI hydrogels. The primary goal of this study was the
creation of surfaces that prevent platelet adhesion and
allow EC adherence as well. Therefore, EC-adhesive
properties of 4/5 ATIII binding strategies were ana-
lyzed. Unfortunately, ATIII binding strategy to PEG,
PEG-CM-Dex, and CM-Dex hydrogels resulted in high
variability of EC coverage. Furthermore, the PEI
hydrogels conjugated with ATIII showed cytotoxic
effects for EC. This was surprising because in this
study PEI alone was not cytotoxic. Nevertheless,
under in vitro conditions PEIs induced molecular
weight dependent cytotoxic effects.49 There was no
convincing explanation for cytotoxic effects of ATIII-
modified PEIs. Finally, only direct coating of ATIII to
plasma-activated PCU was a reproducible method for
EC adhesion, but critical for reproducible low platelet
adhesion (as discussed above).

The last interesting surface modification in this con-
text comprised PEI hydrogel in combination with hep-
arin binding. EC not only adhered and proliferated on
PEI-heparin surfaces but also the manufacturing pro-
cess was highly reproducible regarding EC adhesion.

Reproducibility of low platelet adhesion was accept-
able. PEI-heparin nanogels were already used as gene
delivery system in ovarian cancer cells50 that availed its
excellent blood compatibility and low cytotoxicity.51

Only three PCU modifications (A, E, IH) fulfilled
biological improvements including reduced platelet
adhesion, stable EC adhesion and proliferation, and a
reproducible manufacturing process. In cardiovascular
tissue engineering applications, biocompatibility
control also required analysis of shear forces on the
retention of the cells on the luminal surface of the bio-
engineered vessel. Placement of endothelialized grafts
into the arterial tree resulted in the removal of seeded
cells because of high fluid shear forces applied to the
graft lumen. Retention of a complete and stable EC
layer on the lumen of vascular grafts in the presence
of shear stress is an important prerequisite for long-
term patency and prevention of thrombus formation.52

Therefore, a bioreactor was used to evaluate the
strength of EC adhesion onto modified PCU surfaces
within a vascular graft under pulsatile flow. In a previ-
ous study, it was already shown that a stable
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For details of protocol and abbreviations see ‘‘Materials and methods’’ section. After 3 days, endothelial cells formed a cobblestone-

like monolayer on the luminal surface of IH- (a) and A-grafts (b). However, arrangement of the cells was different to Elastollan� grafts
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endothelialization can be achieved at pulsatile flow
within the fibronectin-coated Elastollan� graft.37 As
shown now, EC seeded onto this surface (reference
material) not only formed a confluent monolayer but
also rearranged to align themselves to the direction of
flow, thus establishing a characteristic polarization that
is observable both in vivo and in vitro.53–55 However,
the Elastollan� material did not fulfill the mechanical
properties required for usage in arterial grafts or a
pump chambers in ventricular assist devices (data not
shown). Instead, the PCU from the present study was
more compatible as graft material, but after seeding of
EC onto untreated and modified PCU grafts, shear
stress caused loss of cell-cell-interactions of ECs
which resulted in partial or complete removal of the
cells. Similar results were shown by Inoguchi et al.30

Human umbilical vein ECs seeded onto compliant
small-diameter grafts made of poly(L-lactide-co-epsi-
lon-caprolactone) fiber meshes got lost after exposure
to high shear forces (>9 dyne/cm2). The shear forces
used in the present study (6 dyn/cm2) did not cause cel-
lular damage because the EC monolayer on reference
material remained stable and exhibited polygonal
cobblestone morphology with aligned cells in flow dir-
ection. Therefore, it could be speculated, that the
anchorage of the EC onto the selected modified PCU
was too weak and the cells got lost under shear stress.
Only PCU grafts with the IH-modification remained
attached after 3 days under pulsatile flow.
Nevertheless, the monolayer was incomplete and the
cells were not arranged in flow direction. The
denuded areas may lead to thrombus formation
when implanted in the vascular network.52,56

Restricted polarization seems to be an indicator for
missing shear force resistance.55 Attempts to seed
ECs on current vascular prosthesis materials remains
problematic. Despite different strategies to modify
scaffold materials such as binding of cell-adhesive
proteins such as fibronectin, laminin, and collagen
VIII, the exposure to shear stress in vivo resulted in
detachment of EC and clot formation.57,58 Promising
results included titanium-coating37 and usage of
nanocomposite biomaterial-based vascular grafts.59

Used PCU grafts were modified with RGD-peptides
and demonstrated under static and dynamic condi-
tions a relatively rapid endothelialization from endo-
thelial progenitor cells. In addition to a compatible
surface treatment for stable endothelialization, con-
trol of shear forces is inalienable in biocompatibility
analysis of bioengineered grafts and vascular assist
devices.55 Future studies must include not only
static tests but also standardized bioreactor systems
that produced physiological flow streams before
implantation into animals or humans.60

The present study has some limitations. We used
primary human endothelial cells instead of blood-
derived progenitor cells59 that might be an attractive
cell type to demonstrate in vivo endothelialization of
implantable cardiovascular grafts.61 Furthermore, our
study focused on the biological characteristics of the
surface modifications. Due to the fact, that none of
the introduced modifications fulfilled our requirements,
physicochemical properties were not analyzed.

Conclusion

Bio- and hemocompatibility testing of plasma-treated
and chemically modified biomedical-grade PCU exhib-
ited promising surface modification that permitted
platelet adhesion and improved endothelialization.
However, improvement of EC adhesion as detected
under static culture conditions failed after introduction
of shear stress. This study suggests the importance of
including mechanical forces in terms of endothelial
retention and ability to resist circulating blood elements
under physiologic conditions. Functionalization of
PCU to promote stable endothelialization for bioengin-
eered vascular grafts or ventricular pump chambers
required further scientific input with special consider-
ation of shear stress.
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