466 research outputs found

    Pumps and Watering Systems for Managed Beef Grazing (2000)

    Get PDF
    Water for beef cattle may come from wells, ponds, creeks, springs or public water supplies, although the last of these sources can be too costly for watering a large herd year-round. Wells are a prime source of water at the farmstead. However, cattle on pasture are usually watered from surface sources in Missouri. Keeping the animals from entering the water source will generally maintain higher water quality and result in better livestock production.New 10/00/7M; Reviewed 4/0

    Pumps and Watering Systems for Managed Beef Grazing (2007)

    Get PDF
    Water for beef cattle may come from wells, ponds, creeks, springs or public water supplies, although the last of these sources can be too costly for watering a large herd year-round. Wells are a prime source of water at the farmstead. However, cattle on pasture are usually watered from surface sources in Missouri. Keeping the animals from entering the water source will generally maintain higher water quality and result in better livestock production.Reviewed April 200

    Observing the disintegration of the A68A iceberg from space

    Get PDF
    Icebergs impact the physical and biological properties of the ocean where they drift, depending on the degree of melting. We use satellite imagery and altimetry to quantify the area, thickness, and volume change of the massive A68A iceberg from its calving off the Larsen-C Ice Shelf in July 2017 until January 2021, when it disintegrated. A68A thinned from 235 ± 9 to 168 ± 10 m, on average, and lost 802 ± 34 Gt of ice in 3.5 years, 254 ± 17 Gt of which was through basal melting (a lower bound for the immediate fresh water input into the ocean). Basal melting peaked at 7.2 ± 2.3 m/month in the Northern Scotia Sea and an estimated 152 ± 61 Gt of freshwater was released off South Georgia, potentially altering the local ocean properties, plankton occurrence and conditions for predators

    MSFC's Advanced Space Propulsion Formulation Task

    Get PDF
    In NASA s Fiscal Year 2012, a small project was undertaken to provide additional substance, depth, and activity knowledge to the technology areas identified in the In-Space Propulsion Systems Roadmap, Technology Area 02 (TA-02), as created under the auspices of the NASA Office of the Chief Technologist (OCT). This roadmap was divided into four basic groups: (1) Chemical Propulsion, (2) Non-chemical Propulsion, (3) Advanced (TRL<3) Propulsion Technologies, and (4) Supporting Technologies. The first two were grouped according to the governing physics. The third group captured technologies and physic concepts that are at a lower TRL level. The fourth group identified pertinent technical areas that are strongly coupled with these related areas which could allow significant improvements in performance. There were a total of 45 technologies identified in TA-02, and 25 of these were studied in this formulation task. The goal of this task was to provide OCT with a knowledge-base for decisionmaking on advanced space propulsion technologies and not waste money by unintentionally repeating past projects or funding the technologies with minor impacts. This formulation task developed the next level of detail for technologies described and provides context to OCT where investments should be made. The presentation will begin with the list of technologies from TA-02, how they were prioritized for this study, and details on what additional data was captured for the technologies studied. Following this, some samples of the documentation will be provided, followed by plans on how the data will be made accessible

    The spatial flux of Earth's meteorite falls found via Antarctic data

    Get PDF
    © 2020 The Authors. Contemporary calculations for the flux of extraterrestrial material falling to the Earth's surface (each event referred to as a "fall") rely upon either short-duration fireball monitoring networks or spatially limited ground-based meteorite searches. To date, making accurate fall flux estimates from the much-documented meteorite stranding zones of Antarctica has been prohibited due to complicating glacial ice dynamics and difficulties in pairing together distinct meteorite samples originating from the same fall. Through glaciological analysis and use of meteorite collection data, we demonstrate how to overcome these barriers to making flux estimates. Furthermore, by showing that a clear latitudinal variation in fall frequencies exists and then modeling its mathematical form, we are able to expand our Antarctic result to a global setting. In this way, we hereby provide the most accurate contemporary fall flux estimates for anywhere on Earth. Inverting the methodology provides a valuable tool for planning new meteorite collection missions to unvisited regions of Antarctica. Our modeling also enables a reassessment of the risk to Earth from larger meteoroid impacts-now 12% higher at the equator and 27% lower at the poles than if the flux were globally uniform

    The Condition of K-12 Public Education in Maine 2011

    Get PDF
    This book is designed to provide Maine citizens, legislators, and educators a bi-annual report on the state of Maine public schools and education. This new edition updates educational information which appeared in earlier editions, and also provides information on several new topics

    Solar Concentrator Demonstrator for Lunar Regolith Processing

    Get PDF
    NASA at the Marshall Space Flight Center (MSFC) is building a portable inflatable solar concentrator ground demonstrator for use in testing in-situ resource utilization (ISRU) lunar regolith processing methods. Of primary interest is the production of oxygen as a propellant oxidizer and for life support. There are various processes being proposed for the in-situ reduction of the lunar regolith, the leading processes are hydrogen reduction, carbothermal reduction and vapor phase pyrolysis. The concentrator system being built at MSFC could support demonstrations of all of these processes. The system consists of a light inflatable concentrator that will capture sunlight and focus it onto a receiver inside a vacuum chamber. Inflatable concentrators are good for space based applications due to their low weight and dense packaging at launch. The hexapod design allows the spot size to be increased to reduce the power density if needed for the process being demonstrated. In addition to the hardware development, a comprehensive simulation model is being developed and will be verified and validated using the system hardware. The model will allow for the evaluation of different lunar locations and operational scenarios for the lunar regolith processing with a high confidence in the predicted results
    corecore