562 research outputs found

    3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival

    Get PDF
    Copyright © 2011 Association for Research in Vision and Ophthalmology. This article is available open access through the publisher’s website at the link below.Purpose. IDO (indoleamine 2,3-dioxygenase) modulates the immune response by depletion of the essential amino acid tryptophan, and IDO overexpression has been shown to prolong corneal allograft survival. This study was conducted to examine the effect of kynurenines, the products of tryptophan breakdown and known to act directly on T lymphocytes, on corneal graft survival. Methods. The effects of kynurenines on T-cell proliferation and death, T-regulatory-cell development, and dendritic cell function, phenotype, and viability were analyzed in vitro. The effect of topical and systemic administration of 3-hydroxykynurenine (3HK) on orthotopic murine corneal allograft survival was examined. Results. T-lymphocyte proliferation was inhibited by two of the four different kynurenines: 3HK and 3-hydroxyanthranilic acid (3HAA). This effect was accompanied by significant T-cell death. Neither 3HK nor 3HAA altered dendritic cell function, nor did they induce apoptosis or pathogenicity to corneal endothelial cells. Administration of systemic and topical 3HK to mice receiving a fully mismatched corneal graft resulted in significant prolongation of graft survival (median survival of control grafts, 12 days; of treated, 19 and 15 days, respectively; P < 0.0003). While systemic administration of 3HK was associated with a significant depletion of CD4+ T, CD8+ T, and B lymphocytes in peripheral blood, no depletion was found after topical administration. Conclusions. The production of kynurenines, in particular 3HK and 3HAA, may be one mechanism (in addition to tryptophan depletion) by which IDO prolongs graft survival. These molecules have potential as specific agents for preventing allograft rejection in patients at high rejection risk.Fight for Sight and the Wellcome Trust

    Discovery of Bisamide-heterocycles as Inhibitors of Scavenger Receptor BI (SR-BI)-mediated Lipid Uptake

    Get PDF
    A new series of potent inhibitors of cellular lipid uptake from HDL particles mediated by scavenger receptor, class B, type I (SR-BI) was identified. The series was identified via a high-throughput screen of the National Institutes of Health Molecular Libraries Small Molecule Repository (NIH MLSMR) that measured the transfer of the fluorescent lipid DiI from HDL particles to CHO cells overexpressing SR-BI. The series is characterized by a linear peptidomimetic scaffold with two adjacent amide groups, as well as an aryl-substituted heterocycle. Analogs of the initial hit were rapidly prepared via Ugi 4-component reaction, and select enantiopure compounds were prepared via a stepwise sequence. Structure–activity relationship (SAR) studies suggest an oxygenated arene is preferred at the western end of the molecule, as well as highly lipophilic substituents on the central and eastern nitrogens. Compound 5e, with (R)-stereochemistry at the central carbon, was designated as probe ML279. Mechanistic studies indicate that ML279 stabilizes the interaction of HDL particles with SR-BI, and its effect is reversible. It shows good potency (IC50 = 17 nM), is non-toxic, plasma stable, and has improved solubility over our alternative probe ML278

    Shrub Communities, Spatial Patterns, and Shrub-Mediated Tree Mortality following Reintroduced Fire in Yosemite National Park, California, USA

    Get PDF
    Shrubs contribute to the forest fuel load; their distribution is important to tree mortality and regeneration, and vertebrate occupancy. We used a method new to fire ecology—extensive continuous mapping of trees and shrub patches within a single large (25.6 ha) study site—to identify changes in shrub area, biomass, and spatial pattern due to fire reintroduction by a backfire following a century of fire exclusion in lower montane forests of the Sierra Nevada, California, USA. We examined whether trees in close proximity to shrubs prior to fire experienced higher mortality rates than trees in areas without shrubs. We calculated shrub biomass using demography subplots and existing allometric equations, and we developed new equations for beaked hazel (Corylus cornuta ssp. californica [A. de Candolle] E. Murray) from full dissection of 50 stems. Fire decreased shrub patch area from 15.1 % to 0.9 %, reduced live shrub biomass from 3.49 Mg ha−1 to 0.27 Mg ha−1, and consumed 4.41 Mg ha−1 of living and dead shrubs. Distinct (non-overlapping) shrub patches decreased from 47 ha−1 to 6 ha−1. The mean distance between shrub patches increased 135 %. Distances between montane chaparral patches increased 285 %, compared to a 54 % increase in distances between riparian shrub patches and an increase of 267 % between generalist shrub patches. Fire-related tree mortality within shrub patches was marginally lower (67.6 % versus 71.8 %), showing a contrasting effect of shrubs on tree mortality between this forest ecosystem and chaparral-dominated ecosystems in which most trees are killed by fire

    Quality of life and pain in premenopausal women with major depressive disorder: The POWER Study

    Get PDF
    BACKGROUND: Whereas it is established that organic pain may induce depression, it is unclear whether pain is more common in healthy subjects with depression. We assessed the prevalence of pain in premenopausal women with major depression (MDD). Subjects were 21- to 45-year-old premenopausal women with MDD (N = 70; age: 35.4 +/- 6.6; mean +/- SD) and healthy matched controls (N = 36; age 35.4 +/- 6.4) participating in a study of bone turnover, the P.O.W.E.R. (Premenopausal, Osteopenia/Osteoporosis, Women, Alendronate, Depression) Study. METHODS: Patients received a clinical assessment by a pain specialist, which included the administration of two standardized forms for pain, the Brief Pain Inventory – Short Form, and the Initial Pain Assessment Tool, and two scales of everyday stressors, the Hassles and Uplifts Scales. In addition, a quality-of-life instrument, the SF-36, was used. The diagnosis of MDD was established by a semi-structured interview, according to the DSM-IV criteria. Substance P (SP) and calcitonin-gene-related-peptide (CGRP), neuropeptides which are known mediators of pain, were measured every hour for 24 h in a subgroup of patients (N = 17) and controls (N = 14). RESULTS: Approximately one-half of the women with depression reported pain of mild intensity. Pain intensity was significantly correlated with the severity of depression (r(2 )= 0.076; P = 0.04) and tended to be correlated with the severity of anxiety, (r(2 )= 0.065; P = 0.07), and the number of depressive episodes (r(2 )= 0.072; P = 0.09). Women with MDD complained of fatigue, insomnia, and memory problems and experienced everyday negative stressors more frequently than controls. Quality of life was decreased in women with depression, as indicated by lower scores in the emotional and social well-being domains of the SF-36. SP (P < 0.0003) and CGRP (P < 0.0001) were higher in depressed subjects. CONCLUSION: Women with depression experienced pain more frequently than controls, had a lower quality of life, and complained more of daily stressors. Assessment of pain may be important in the clinical evaluation of women with MDD. SP and CGRP may be useful biological markers in women with MDD

    Large-Diameter Trees Dominate Snag and Surface Biomass Following Reintroduced Fire

    Get PDF
    The reintroduction of fire to landscapes where it was once common is considered a priority to restore historical forest dynamics, including reducing tree density and decreasing levels of woody biomass on the forest floor. However, reintroducing fire causes tree mortality that can have unintended ecological outcomes related to woody biomass, with potential impacts to fuel accumulation, carbon sequestration, subsequent fire severity, and forest management. In this study, we examine the interplay between fire and carbon dynamics by asking how reintroduced fire impacts fuel accumulation, carbon sequestration, and subsequent fire severity potential. Beginning pre-fire, and continuing 6 years post-fire, we tracked all live, dead, and fallen trees ≥ 1 cm in diameter and mapped all pieces of deadwood (downed woody debris) originating from tree boles ≥ 10 cm diameter and ≥ 1 m in length in 25.6 ha of an Abies concolor/Pinus lambertiana forest in the central Sierra Nevada, California, USA. We also tracked surface fuels along 2240 m of planar transects pre-fire, immediately post-fire, and 6 years post-fire. Six years after moderate-severity fire, deadwood ≥ 10 cm diameter was 73 Mg ha−1, comprised of 32 Mg ha−1 that persisted through fire and 41 Mg ha−1 of newly fallen wood (compared to 72 Mg ha−1 pre-fire). Woody surface fuel loading was spatially heterogeneous, with mass varying almost four orders of magnitude at the scale of 20 m × 20 m quadrats (minimum, 0.1 Mg ha−1; mean, 73 Mg ha−1; maximum, 497 Mg ha−1). Wood from large-diameter trees (≥ 60 cm diameter) comprised 57% of surface fuel in 2019, but was 75% of snag biomass, indicating high contributions to current and future fuel loading. Reintroduction of fire does not consume all large-diameter fuel and generates high levels of surface fuels ≥ 10 cm diameter within 6 years. Repeated fires are needed to reduce surface fuel loading

    Airway microbiota-host interactions regulate secretory leukocyte protease inhibitor levels and influence allergic airway inflammation

    Get PDF
    Homeostatic mucosal immune responses are fine-tuned by naturally evolved interactions with native microbes, and integrating these relationships into experimental models can provide new insights into human diseases. Here, we leverage a murine-adapted airway microbe, Bordetella pseudohinzii (Bph), to investigate how chronic colonization impacts mucosal immunity and the development of allergic airway inflammation (AAI). Colonization with Bph induces the differentiation of interleukin-17A (IL-17A)-secreting T-helper cells that aid in controlling bacterial abundance. Bph colonization protects from AAI and is associated with increased production of secretory leukocyte protease inhibitor (SLPI), an antimicrobial peptide with anti-inflammatory properties. These findings are additionally supported by clinical data showing that higher levels of upper respiratory SLPI correlate both with greater asthma control and the presence of Haemophilus, a bacterial genus associated with AAI. We propose that SLPI could be used as a biomarker of beneficial host-commensal relationships in the airway

    Transposon mutagenesis in Mycobacterium kansasii links a small RNA gene to colony morphology and biofilm formation and identifies 9,885 intragenic insertions that do not compromise colony outgrowth

    Full text link
    Mycobacterium kansasii (Mk) is a resilient opportunistic human pathogen that causes tuberculosis-like chronic pulmonary disease and mortality stemming from comorbidities and treatment failure. The standard treatment of Mk infections requires costly, long-term, multidrug courses with adverse side effects. The emergence of drug-resistant isolates further complicates the already challenging drug therapy regimens and threatens to compromise the future control of Mk infections. Despite the increasingly recognized global burden of Mk infections, the biology of this opportunistic pathogen remains essentially unexplored. In particular, studies reporting gene function or generation of defined mutants are scarce. Moreover, no transposon (Tn) mutagenesis tool has been validated for use in Mk, a situation limiting the repertoire of genetic approaches available to accelerate the dissection of gene function and the generation of gene knockout mutants in this poorly characterized pathogen. In this study, we validated the functionality of a powerful Tn mutagenesis tool in Mk and used this tool in conjunction with a forward genetic screen to establish a previously unrecognized role of a conserved mycobacterial small RNA gene of unknown function in colony morphology features and biofilm formation. We also combined Tn mutagenesis with next-generation sequencing to identify 12,071 Tn insertions that do not compromise viability in vitro. Finally, we demonstrated the susceptibility of the Galleria mellonella larva to Mk, setting the stage for further exploration of this simple and economical infection model system to the study of this pathogen

    Genome-wide association analysis of self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated with thrombosis

    Get PDF
    Thrombotic diseases are among the leading causes of morbidity and mortality in the world. To add insights into the genetic regulation of thrombotic disease, we conducted a genome-wide association study (GWAS) of 6135 self-reported blood clots events and 252 827 controls of European ancestry belonging to the 23andMe cohort of research participants. Eight loci exceeded genome-wide significance. Among the genome-wide significant results, our study replicated previously known venous thromboembolism (VTE) loci near the F5, FGA-FGG, F11, F2, PROCR and ABO genes, and the more recently discovered locus near SLC44A2 In addition, our study reports for the first time a genome-wide significant association between rs114209171, located upstream of the F8 structural gene, and thrombosis risk. Analyses of expression profiles and expression quantitative trait loci across different tissues suggested SLC44A2, ILF3 and AP1M2 as the three most plausible candidate genes for the chromosome 19 locus, our only genome-wide significant thrombosis-related locus that does not harbor likely coagulation-related genes. In addition, we present data showing that this locus also acts as a novel risk factor for stroke and coronary artery disease (CAD). In conclusion, our study reveals novel common genetic risk factors for VTE, stroke and CAD and provides evidence that self-reported data on blood clots used in a GWAS yield results that are comparable with those obtained using clinically diagnosed VTE. This observation opens up the potential for larger meta-analyses, which will enable elucidation of the genetics of thrombotic diseases, and serves as an example for the genetic study of other diseases

    Optical chemosensors and reagents to detect explosives

    Full text link
    [EN] This critical review is focused on examples reported from 1947 to 2010 related to the design of chromo-fluorogenic chemosensors and reagents for explosives (141 references). © 2012 The Royal Society of Chemistry.Financial support from the Spanish Government (project MAT2009-14564-C04) and the Generalitat Valencia (project PROMETEO/2009/016) is gratefully acknowledged. Y.S. is grateful to the Spanish Ministry of Science and Innovation for her grant.Salinas Soler, Y.; Martínez Mañez, R.; Marcos Martínez, MD.; Sancenón Galarza, F.; Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews. 41(3):1261-1296. https://doi.org/10.1039/c1cs15173hS12611296413Furton, K. (2001). The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta, 54(3), 487-500. doi:10.1016/s0039-9140(00)00546-4H�kansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & H�kansson, P. (2000). Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of Mass Spectrometry, 35(3), 337-346. doi:10.1002/(sici)1096-9888(200003)35:33.0.co;2-7Walsh, M. (2001). Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta, 54(3), 427-438. doi:10.1016/s0039-9140(00)00541-5Sylvia, J. M., Janni, J. A., Klein, J. D., & Spencer, K. M. (2000). Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines. Analytical Chemistry, 72(23), 5834-5840. doi:10.1021/ac0006573Yinon, J. (1982). Mass spectrometry of explosives: Nitro compounds, nitrate esters, and nitramines. Mass Spectrometry Reviews, 1(3), 257-307. doi:10.1002/mas.1280010304Mathurin, J. C., Faye, T., Brunot, A., Tabet, J. C., Wells, G., & Fuché, C. (2000). High-Pressure Ion Source Combined with an In-Axis Ion Trap Mass Spectrometer. 1. Instrumentation and Applications. Analytical Chemistry, 72(20), 5055-5062. doi:10.1021/ac000171mHallowell, S. (2001). Screening people for illicit substances: a survey of current portal technology. Talanta, 54(3), 447-458. doi:10.1016/s0039-9140(00)00543-9Vourvopoulos, G. (2001). Pulsed fast/thermal neutron analysis: a technique for explosives detection. Talanta, 54(3), 459-468. doi:10.1016/s0039-9140(00)00544-0Krausa, M., & Schorb, K. (1999). Trace detection of 2,4,6-trinitrotoluene in the gaseous phase by cyclic voltammetry. Journal of Electroanalytical Chemistry, 461(1-2), 10-13. doi:10.1016/s0022-0728(98)00162-4Steinfeld, J. I., & Wormhoudt, J. (1998). EXPLOSIVES DETECTION: A Challenge for Physical Chemistry. Annual Review of Physical Chemistry, 49(1), 203-232. doi:10.1146/annurev.physchem.49.1.203Moore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499-2512. doi:10.1063/1.1771493Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015aMartínez-Máñez, R., & Sancenón, F. (2005). New Advances in Fluorogenic Anion Chemosensors. Journal of Fluorescence, 15(3), 267-285. doi:10.1007/s10895-005-2626-zXu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368jNolan, E. M., & Lippard, S. J. (2008). Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews, 108(9), 3443-3480. doi:10.1021/cr068000qPallavicini, P., Diaz-Fernandez, Y. A., & Pasotti, L. (2009). Micelles as nanosized containers for the self-assembly of multicomponent fluorescent sensors. Coordination Chemistry Reviews, 253(17-18), 2226-2240. doi:10.1016/j.ccr.2008.11.010Que, E. L., & Chang, C. J. (2010). Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem. Soc. Rev., 39(1), 51-60. doi:10.1039/b914348nMohr, G. J. (2004). Tailoring the sensitivity and spectral properties of a chromoreactand for the detection of amines and alcohols. Analytica Chimica Acta, 508(2), 233-237. doi:10.1016/j.aca.2003.12.005Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421eJ. P. Agrawal and R. D.Hodgson, Organic Chemistry of Explosives, John Wiley & Sons, Chichester, 2007, ISBN-13, 978, 0-470-02967-1, HBCumming, C. J., Aker, C., Fisher, M., Fok, M., la Grone, M. J., Reust, D., … Williams, V. (2001). Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines. IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1119-1128. doi:10.1109/36.927423Toal, S. J., & Trogler, W. C. (2006). Polymer sensors for nitroaromatic explosives detection. Journal of Materials Chemistry, 16(28), 2871. doi:10.1039/b517953jMcQuade, D. T., Pullen, A. E., & Swager, T. M. (2000). Conjugated Polymer-Based Chemical Sensors. Chemical Reviews, 100(7), 2537-2574. doi:10.1021/cr9801014Zhou, Q., & Swager, T. M. (1995). Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers. Journal of the American Chemical Society, 117(26), 7017-7018. doi:10.1021/ja00131a031Yang, J.-S., & Swager, T. M. (1998). Porous Shape Persistent Fluorescent Polymer Films:  An Approach to TNT Sensory Materials. Journal of the American Chemical Society, 120(21), 5321-5322. doi:10.1021/ja9742996Yang, J.-S., & Swager, T. M. (1998). Fluorescent Porous Polymer Films as TNT Chemosensors:  Electronic and Structural Effects. Journal of the American Chemical Society, 120(46), 11864-11873. doi:10.1021/ja982293qYamaguchi, S., & Swager, T. M. (2001). Oxidative Cyclization of Bis(biaryl)acetylenes:  Synthesis and Photophysics of Dibenzo[g,p]chrysene-Based Fluorescent Polymers. Journal of the American Chemical Society, 123(48), 12087-12088. doi:10.1021/ja016692oZahn, S., & Swager, T. M. (2002). Three-Dimensional Electronic Delocalization in Chiral Conjugated Polymers. Angewandte Chemie International Edition, 41(22), 4225-4230. doi:10.1002/1521-3773(20021115)41:223.0.co;2-3Amara, J. P., & Swager, T. M. (2005). Synthesis and Properties of Poly(phenylene ethynylene)s with Pendant Hexafluoro-2-propanol Groups. Macromolecules, 38(22), 9091-9094. doi:10.1021/ma051562bZhao, D., & Swager, T. M. (2005). Sensory Responses in Solution vs Solid State:  A Fluorescence Quenching Study of Poly(iptycenebutadiynylene)s. Macromolecules, 38(22), 9377-9384. doi:10.1021/ma051584yThomas III, S. W., Amara, J. P., Bjork, R. E., & Swager, T. M. (2005). Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB). Chemical Communications, (36), 4572. doi:10.1039/b508408cNarayanan, A., Varnavski, O. P., Swager, T. M., & Goodson, T. (2008). Multiphoton Fluorescence Quenching of Conjugated Polymers for TNT Detection. The Journal of Physical Chemistry C, 112(4), 881-884. doi:10.1021/jp709662wChen, S., Zhang, Q., Zhang, J., Gu, J., & Zhang, L. (2010). Synthesis of two conjugated polymers as TNT chemosensor materials. Sensors and Actuators B: Chemical, 149(1), 155-160. doi:10.1016/j.snb.2010.06.007Long, Y., Chen, H., Yang, Y., Wang, H., Yang, Y., Li, N., … Liu, F. (2009). Electrospun Nanofibrous Film Doped with a Conjugated Polymer for DNT Fluorescence Sensor. Macromolecules, 42(17), 6501-6509. doi:10.1021/ma900756wChang, C.-P., Chao, C.-Y., Huang, J. H., Li, A.-K., Hsu, C.-S., Lin, M.-S., … Su, A.-C. (2004). Fluorescent conjugated polymer films as TNT chemosensors. Synthetic Metals, 144(3), 297-301. doi:10.1016/j.synthmet.2004.04.003Levitsky, I. A., Euler, W. B., Tokranova, N., & Rose, A. (2007). Fluorescent polymer-porous silicon microcavity devices for explosive detection. Applied Physics Letters, 90(4), 041904. doi:10.1063/1.2432247Chen, L., McBranch, D., Wang, R., & Whitten, D. (2000). Surfactant-induced modification of quenching of conjugated polymer fluorescence by electron acceptors: applications for chemical sensing. Chemical Physics Letters, 330(1-2), 27-33. doi:10.1016/s0009-2614(00)00970-2Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M., & Bulović, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876-879. doi:10.1038/nature03438Tamao, K., Uchida, M., Izumizawa, T., Furukawa, K., & Yamaguchi, S. (1996). Silole Derivatives as Efficient Electron Transporting Materials. Journal of the American Chemical Society, 118(47), 11974-11975. doi:10.1021/ja962829cSohn, H., Huddleston, R. R., Powell, D. R., West, R., Oka, K., & Yonghua, X. (1999). An Electroluminescent Polysilole and Some Dichlorooligosiloles. Journal of the American Chemical Society, 121(12), 2935-2936. doi:10.1021/ja983350iOhshita, J., & Kunai, A. (1998). Polymers with alternating organosilicon and π-conjugated units. Acta Polymerica, 49(8), 379-403. doi:10.1002/(sici)1521-4044(199808)49:83.0.co;2-zToal, S. J., Magde, D., & Trogler, W. C. (2005). Luminescent oligo(tetraphenyl)silole nanoparticles as chemical sensors for aqueous TNT. Chemical Communications, (43), 5465. doi:10.1039/b509404fSohn, H., Sailor, M. J., Magde, D., & Trogler, W. C. (2003). Detection of Nitroaromatic Explosives Based on Photoluminescent Polymers Containing Metalloles. Journal of the American Chemical Society, 125(13), 3821-3830. doi:10.1021/ja021214eSanchez, J. C., DiPasquale, A. G., Rheingold, A. L., & Trogler, W. C. (2007). Synthesis, Luminescence Properties, and Explosives Sensing with 1,1-Tetraphenylsilole- and 1,1-Silafluorene-vinylene Polymers. Chemistry of Materials, 19(26), 6459-6470. doi:10.1021/cm702299gSanchez, J. C., Urbas, S. A., Toal, S. J., DiPasquale, A. G., Rheingold, A. L., & Trogler, W. C. (2008). Catalytic Hydrosilylation Routes to Divinylbenzene Bridged Silole and Silafluorene Polymers. Applications to Surface Imaging of Explosive Particulates. Macromolecules, 41(4), 1237-1245. doi:10.1021/ma702274cSanchez, J. C., & Trogler, W. C. (2008). Efficient blue-emitting silafluorene–fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives. Journal of Materials Chemistry, 18(26), 3143. doi:10.1039/b802623hLiu, J., Zhong, Y., Lam, J. W. Y., Lu, P., Hong, Y., Yu, Y., … Tang, B. Z. (2010). Hyperbranched Conjugated Polysiloles: Synthesis, Structure, Aggregation-Enhanced Emission, Multicolor Fluorescent Photopatterning, and Superamplified Detection of Explosives. Macromolecules, 43(11), 4921-4936. doi:10.1021/ma902432mLu, P., Lam, J. W. Y., Liu, J., Jim, C. K. W., Yuan, W., Xie, N., … Tang, B. Z. (2010). Aggregation-Induced Emission in a Hyperbranched Poly(silylenevinylene) and Superamplification in Its Emission Quenching by Explosives. Macromolecular Rapid Communications, 31(9-10), 834-839. doi:10.1002/marc.200900794Liu, Y., Mills, R. C., Boncella, J. M., & Schanze, K. S. (2001). Fluorescent Polyacetylene Thin Film Sensor for Nitroaromatics. Langmuir, 17(24), 7452-7455. doi:10.1021/la010696pToy, L. G., Nagai, K., Freeman, B. D., Pinnau, I., He, Z., Masuda, T., … Yampolskii, Y. P. (2000). Pure-Gas and Vapor Permeation and Sorption Properties of Poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA). Macromolecules, 33(7), 2516-2524. doi:10.1021/ma991566eSaxena, A., Fujiki, M., Rai, R., & Kwak, G. (2005). Fluoroalkylated Polysilane Film as a Chemosensor for Explosive Nitroaromatic Compounds. Chemistry of Materials, 17(8), 2181-2185. doi:10.1021/cm048319wSaxena, A., Rai, R., Kim, S.-Y., Fujiki, M., Naito, M., Okoshi, K., & Kwak, G. (2006). Weak noncovalent Si···FC interactions stabilized fluoroalkylated rod-like polysilanes as ultrasensitive chemosensors. Journal of Polymer Science Part A: Polymer Chemistry, 44(17), 5060-5075. doi:10.1002/pola.21607Toal, S. J., Sanchez, J. C., Dugan, R. E., & Trogler, W. C. (2007). Visual Detection of Trace Nitroaromatic Explosive Residue Using Photoluminescent Metallole-Containing Polymers. Journal of Forensic Sciences, 52(1), 79-83. doi:10.1111/j.1556-4029.2006.00332.xStringer, R. C., Gangopadhyay, S., & Grant, S. A. (2010). Detection of Nitroaromatic Explosives Using a Fluorescent-Labeled Imprinted Polymer. Analytical Chemistry, 82(10), 4015-4019. doi:10.1021/ac902838cLi, J., Kendig, C. E., & Nesterov, E. E. (2007). Chemosensory Performance of Molecularly Imprinted Fluorescent Conjugated Polymer Materials. Journal of the American Chemical Society, 129(51), 15911-15918. doi:10.1021/ja0748027Bunte, G., Hürttlen, J., Pontius, H., Hartlieb, K., & Krause, H. (2007). Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. Analytica Chimica Acta, 591(1), 49-56. doi:10.1016/j.aca.2007.02.014Zhang, X., & Jenekhe, S. A. (2000). Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions. Macromolecules, 33(6), 2069-2082. doi:10.1021/ma991913kHou, S., Ding, M., & Gao, L. (2003). Synthesis and Properties of Polyquinolines and Polyanthrazolines Containing Pyrrole Units in the Main Chain. Macromolecules, 36(11), 3826-3832. doi:10.1021/ma025768dKim, T. H., Kim, H. J., Kwak, C. G., Park, W. H., & Lee, T. S. (2006). Aromatic oxadiazole-based conjugated polymers with excited-state intramolecular proton transfer: Their synthesis and sensing ability for explosive nitroaromatic compounds. Journal of Polymer Science Part A: Polymer Chemistry, 44(6), 2059-2068. doi:10.1002/pola.21319Nie, H., Zhao, Y., Zhang, M., Ma, Y., Baumgarten, M., & Müllen, K. (2011). Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer. Chem. Commun., 47(4), 1234-1236. doi:10.1039/c0cc03659eQin, A., Lam, J. W. Y., Tang, L., Jim, C. K. W., Zhao, H., Sun, J., & Tang, B. Z. (2009). Polytriazoles with Aggregation-Induced Emission Characteristics: Synthesis by Click Polymerization and Application as Explosive Chemosensors. Macromolecules, 42(5), 1421-1424. doi:10.1021/ma8024706Kumar, A., Pandey, M. K., Anandakathir, R., Mosurkal, R., Parmar, V. S., Watterson, A. C., & Kumar, J. (2010). Sensory response of pegylated and siloxanated 4,8-dimethylcoumarins: A fluorescence quenching study by nitro aromatics. Sensors and Actuators B: Chemical, 147(1), 105-110. doi:10.1016/j.snb.2010.02.004Nguyen, H. H., Li, X., Wang, N., Wang, Z. Y., Ma, J., Bock, W. J., & Ma, D. (2009). Fiber-Optic Detection of Explosives Using Readily Available Fluorescent Polymers. Macromolecules, 42(4), 921-926. doi:10.1021/ma802460qAlbert, K. J., & Walt, D. R. (2000). High-Speed Fluorescence Detection of Explosives-like Vapors. Analytical Chemistry, 72(9), 1947-1955. doi:10.1021/ac991397wGao, D., Wang, Z., Liu, B., Ni, L., Wu, M., & Zhang, Z. (2008). Resonance Energy Transfer-Amplifying Fluorescence Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT. Analytical Chemistry, 80(22), 8545-8553. doi:10.1021/ac8014356Fang, Q., Geng, J., Liu, B., Gao, D., Li, F., Wang, Z., … Zhang, Z. (2009). Inverted Opal Fluorescent Film Chemosensor for the Detection of Explosive Nitroaromatic Vapors through Fluorescence Resonance Energy Transfer. Chemistry - A European Journal, 15(43), 11507-11514. doi:10.1002/chem.200901488Geng, J., Liu, P., Liu, B., Guan, G., Zhang, Z., & Han, M.-Y. (2010). A Reversible Dual-Response Fluorescence Switch for the Detection of Multiple Analytes. Chemistry - A European Journal, 16(12), 3720-3727. doi:10.1002/chem.200902721Yang, J., Aschemeyer, S., Martinez, H. P., & Trogler, W. C. (2010). Hollow silica nanospheres containing a silafluorene–fluorene conjugated polymer for aqueous TNT and RDX detection. Chemical Communications, 46(36), 6804. doi:10.1039/c0cc01906bFeng, J., Li, Y., & Yang, M. (2010). Conjugated polymer-grafted silica nanoparticles for the sensitive detection of TNT. Sensors and Actuators B: Chemical, 145(1), 438-443. doi:10.1016/j.snb.2009.12.056Tao, S., Shi, Z., Li, G., & Li, P. (2006). Hierarchically Structured Nanocomposite Films as Highly Sensitive Chemosensory Materials for TNT Detection. ChemPhysChem, 7(9), 1902-1905. doi:10.1002/cphc.200600185Tao, S., Yin, J., & Li, G. (2008). High-performance TNT chemosensory materials based on nanocomposites with bimodal porous structures. Journal of Materials Chemistry, 18(40), 4872. doi:10.1039/b802486cTao, S., Li, G., & Zhu, H. (2006). Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor. Journal of Materials Chemistry, 16(46), 4521. doi:10.1039/b606061gTao, S., & Li, G. (2007). Porphyrin-doped mesoporous silica films for rapid TNT detection. Colloid and Polymer Science, 285(7), 721-728. doi:10.1007/s00396-007-1643-7Yildirim, A., Budunoglu, H., Deniz, H., O. Guler, M., & Bayindir, M. (2010). Template-Free Synthesis of Organically Modified Silica Mesoporous Thin Films for TNT Sensing. ACS Applied Materials & Interfaces, 2(10), 2892-2897. doi:10.1021/am100568cLi, H., Wang, J., Pan, Z., Cui, L., Xu, L., Wang, R., … Jiang, L. (2011). Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J. Mater. Chem., 21(6), 1730-1735. doi:10.1039/c0jm02554bTao, S., Li, G., & Yin, J. (2007). Fluorescent nanofibrous membranes for trace detection of TNT vapor. Journal of Materials Chemistry, 17(26), 2730. doi:10.1039/b618122hNaddo, T., Che, Y., Zhang, W., Balakrishnan, K., Yang, X., Yen, M., … Zang, L. (2007). Detection of Explosives with a Fluorescent Nanofibril Film. Journal of the American Chemical Society, 129(22), 6978-6979. doi:10.1021/ja070747qContent, S., Trogler, W. C., & Sailor, M. J. (2000). Detection of Nitrobenzene, DNT, and TNT Vapors by Quenching of Porous Silicon Photoluminescence. Chemistry - A European Journal, 6(12), 2205-2213. doi:10.1002/1521-3765(20000616)6:123.0.co;2-aKang, J., Ding, L., Lü, F., Zhang, S., & Fang, Y. (2006). Dansyl-based fluorescent film sensor for nitroaromatics in aqueous solution. Journal of Physics D: Applied Physics, 39(23), 5097-5102. doi:10.1088/0022-3727/39/23/030Zhang, S., Lü, F., Gao, L., Ding, L., & Fang, Y. (2007). Fluorescent Sensors for Nitroaromatic Compounds Based on Monolayer Assembly of Polycyclic Aromatics. Langmuir, 23(3), 1584-1590. doi:10.1021/la062773sHe, G., Zhang, G., Lü, F., & Fang, Y. (2009). Fluorescent Film Sensor for Vapor-Phase Nitroaromatic Explosives via Monolayer Assembly of Oligo(diphenylsilane) on Glass Plate Surfaces. Chemistry of Materials, 21(8), 1494-1499. doi:10.1021/cm900013fGoodpaster, J. V., & McGuffin, V. L. (2001). Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives. Analytical Chemistry, 73(9), 2004-2011. doi:10.1021/ac001347nHughes, A. D., Glenn, I. C., Patrick, A. D., Ellington, A., & Anslyn, E. V. (2008). A Pattern Recognition Based Fluorescence Quenching Assay for the Detection and Identification of Nitrated Explosive Analytes. Chemistry - A European Journal, 14(6), 1822-1827. doi:10.1002/chem.200701546Malashikhin, S., & Finney, N. S. (2008). Fluorescent Signaling Based on Sulfoxide Profluorophores: Application to the Visual Detection of the Explosive TATP. Journal of the American Chemical Society, 130(39), 12846-12847. doi:10.1021/ja802989vFocsaneanu, K.-S., & Scaiano, J. C. (2005). Potential analytical applications of differential fluorescence quenching: pyrene monomer and excimer emissions as sensors for electron deficient molecules. Photochemical & Photobiological Sciences, 4(10), 817. doi:10.1039/b505249aLee, Y. H., Liu, H., Lee, J. Y., Kim, S. H., Kim, S. K., Sessler, J. L., … Kim, J. S. (2010). Dipyrenylcalix[4]arene-A Fluorescence-Based Chemosensor for Trinitroaromatic Explosives. Chemistry - A European Journal, 16(20), 5895-5901. doi:10.1002/chem.200903439Jian, C., & Seitz, W. R. (1990). Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching. Analytica Chimica Acta, 237, 265-271. doi:10.1016/s0003-2670(00)83928-8Vijayakumar, C., Tobin, G., Schmitt, W., Kim, M.-J., & Takeuchi, M. (2010). Detection of explosive vapors with a charge transfer molecule: self-assembly assisted morphology tuning and enhancement in sensing efficiency. Chemical Communications, 46(6), 874. doi:10.1039/b921520dZyryanov, G. V., Palacios, M. A., & Anzenbacher, P. (2008). Simple Molecule-Based Fluorescent Sensors for Vapor Detection of TNT. Organic Letters, 10(17), 3681-3684. doi:10.1021/ol801030uCavaye, H., Shaw, P. E., Wang, X., Burn, P. L., Lo, S.-C., & Meredith, P. (2010). Effect of Dimensionality in Dendrimeric and Polymeric Fluorescent Materials for Detecting Explosives. Macromolecules, 43(24), 10253-10261. doi:10.1021/ma102369qPonnu, A., & Anslyn, E. V. (2010). A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives. Supramolecular Chemistry, 22(1), 65-71. doi:10.1080/10610270903378032Zhang, C., Che, Y., Yang, X., Bunes, B. R., & Zang, L. (2010). Organic nanofibrils based on linear carbazole trimer for explosive sensing. Chemical Communications, 46(30), 5560. doi:10.1039/c0cc01258kLi, Z., Dong, Y. Q., Lam, J. W. Y., Sun, J., Qin, A., Häußler, M., … Tang, B. Z. (2009). Functionalized Siloles: Versatile Synthesis, Aggregation-Induced Emission, and Sensory and Device Applications. Advanced Functional Materials, 19(6), 905-917. doi:10.1002/adfm.20
    corecore