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SUMMARY

Homeostatic mucosal immune responses are fine-tuned by naturally evolved interactions with native mi-
crobes, and integrating these relationships into experimental models can provide new insights into human
diseases. Here, we leverage a murine-adapted airway microbe, Bordetella pseudohinzii (Bph), to investigate
how chronic colonization impacts mucosal immunity and the development of allergic airway inflammation
(AAI). Colonization with Bph induces the differentiation of interleukin-17A (IL-17A)-secreting T-helper cells
that aid in controlling bacterial abundance. Bph colonization protects from AAI and is associated with
increased production of secretory leukocyte protease inhibitor (SLPI), an antimicrobial peptide with anti-in-
flammatory properties. These findings are additionally supported by clinical data showing that higher levels
of upper respiratory SLPI correlate bothwith greater asthma control and the presence ofHaemophilus, a bac-
terial genus associated with AAI. We propose that SLPI could be used as a biomarker of beneficial host-
commensal relationships in the airway.

INTRODUCTION

The airway microbiota is increasingly recognized for its diverse

roles in respiratory inflammatory diseases, especially asthma.

Microbiologic surveys of upper and lower airway samples have

demonstrated that individuals with asthma harbor distinct micro-

bial signatures associated with various facets of the disease. In

early childhood, the presence of select bacteria within the upper

airway, including Haemophilus, Streptococcus, and Moraxella

(HSM) species, has been associated with later development of

asthma (e.g., Bisgaard et al., 2007, 2010), although healthy indi-

viduals can also harbor these organisms, suggesting compensa-

tory host responses that may mitigate asthma risk. In addition to

predisposing human to asthma, the airway microbiota has been

proposed as a factor that influences an individual’s clinical

phenotype, including the immunologic markers associated with

disease and response to therapy, referred to as an asthma endo-

type. Although the most established asthma endotype is associ-

ated with allergic T-helper 2 (Th2) responses, characterized by

the production of interleukin-4 (IL-4), IL-5, and IL-13 cytokines,

T-helper 17 (Th17) responses, defined by the production of IL-

17A, is also of particular interest. In clinical studies, higher de-

grees of IL-17A expression have been associated with severe

asthma and correlate with increased numbers of airway neutro-

phils and resistance to corticosteroid treatments (Chesné et al.,

2014; Östling et al., 2019). Animal models have additionally

shown that the adoptive transfer of allergen-specific Th17 cells

contributes to allergic airway inflammation (AAI) and drives

airway neutrophilia (McKinley et al., 2008; Wakashin et al.,

2008). In contrast, other studies suggest that IL-17Amay directly

antagonize Th2 responses and reduce AAI (Barlow et al., 2011;

Choy et al., 2015; Newcomb et al., 2013; Schnyder-Candrian

et al., 2006).

How airway microbes shape asthma endotypes and influence

the particular clinical features of the disease is an area of active

investigation. The importance of human airway microbes, such

asHaemophilus influenzae (McCann et al., 2016), Streptococcus

pneumoniae (Preston et al., 2007; Preston et al., 2011), and

Moraxella catarrhalis (Alnahas et al., 2017), has been translated

to animal models of asthma by demonstrating that respiratory

exposure to these microbes directly affects AAI. Although these

studies have confirmed the potential of select airway bacteria to

Cell Reports 33, 108331, November 3, 2020 ª 2020 The Authors. 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ll
OPEN ACCESS

mailto:akau@wustl.edu
https://doi.org/10.1016/j.celrep.2020.108331
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108331&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


modulate AAI, one important limitation of this approach is that

mouse models using bacteria from the human airway may not

establish a host-microbe interaction that adequately recapitu-

lates important interactions observed in humans. This is

especially relevant for asthma because many of the microbes

implicated in worsening AAI from clinical studies only transiently

colonize mice (Unhanand et al., 1992). These constraints on

colonization limit our ability to use mice to model the effects of

microbes that would be expected to persist in human airways.

One possible solution to the challenge of modeling the effects

of microbial exposure in murine models is to use natural mem-

bers of the mouse microbiota. Experiments incorporating

‘‘wild’’ mouse microbes in a laboratory setting have been used

to better align mouse models of endotoxemia (Rosshart et al.,

2019), viral infections (Beura et al., 2016), and tumorigenesis

(Rosshart et al., 2017) to human disease.

Here, we describe the host response to Bordetella pseudohin-

zii (Bph), a recently described murine respiratory microbe (Clark

et al., 2016; Ivanov et al., 2016) that is also found in wild rodents

(Loong et al., 2018), and its effects on a model of AAI. Although

Bph persists in the respiratory tract of mice for months after inoc-

ulation (Dewan et al., 2019), the preponderance of infections do

not lead to overt signs of illness (Hayashimoto et al., 2012).

Others have reported that despite its apparent benign effects

on mice, Bph can induce changes in pulmonary immune param-

eters (e.g., neutrophilia), leading to concerns about Bph possibly

confounding murine pulmonary disease models (Clark et al.,

2016, 2017; Perniss et al., 2018). On the other hand, we specu-

lated that studying a bacterium within the context of AAI that

evolved to reside in the murine respiratory tract and was not

transplanted from humans may provide unique insights into

how prolonged exposure to a respiratory microbe affects

Figure 1. Bordetella pseudohinzii (Bph) Induces a Th17 Response in the Lungs of Colonized Mice

(A) Comparison of the abundance of virulence factor classes encoded in the genomes of members in the genus Bordetella. Virulence factors were identified by

sequence alignment to the Virulence Factor Database (VFDB) and binned into functional groups defined by VFDB (Chen et al., 2016). Assemblies of Bph isolates

described in this study (2-1 and 5-5) are also shown.

(B) Recovery ofBph from respiratory tract samples over a 184-day period. CFUs per section of tissue or mL of lavage fluid are shown. Box indicates 25th and 75th

percentiles and whiskers are 1.5 3 interquartile range. n = 2–6 mice per time point.

(C) Representative hematoxylin and eosin staining of mice that received either HK (top panel) or live (bottom panel) Bph taken 60 days after inoculation.

(D–F) Flow cytometry of lung tissue digests frommice 30 days after that received HK (blue) or live Bph (red) inoculation. n = 9–10mice/group, combined from two

independent experiments.

(D) Neutrophils as a percentage of live cells from lung. Neutrophils were defined as CD11b+Ly6G+.

(E) Percentage of Teff (CD4+TCRb+FoxP3�CD44hiCD62Llo) cells from the lungs as a percentage of total T-helper cells.

(F) Percentages of IL-17A+IFNg�-secreting T-helper 17 (Th17) cells from the lungs.

Statistical significance: Mann-Whitney U test. Horizontal lines indicate median values. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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pulmonary inflammation. We found that Bph induces a marked

Th17 response in mice that is associated with protection from

AAI and stimulates the production of the antimicrobial protein

secretory leukocyte protease inhibitor (SLPI). These findings

are further supported by clinical data showing that increased

nasal SLPI is correlated with greater asthma control and differ-

ences in bacterial composition within the upper airway

microbiota.

RESULTS

Bph Colonizes the Mouse Respiratory Tract
We first wanted to contrast Bph to the ‘‘classical’’ bordetellae

strains (Bordetella pertussis, Bordetella parapertussis, and Bor-

detella bronchiseptica) that are well-known causes of respiratory

infections to better understand its virulence potential. To accom-

plish this, we compared known Bordetella reference strains and

our own Bph isolate assemblies (designated 2-1 and 5-5) to a

database of known bacterial virulence factors (Chen et al.,

2016; Figure 1A). This analysis confirmed that Bph lacked the

virulence factors associated with classical pathogenic Borde-

tella strains, including the genes for Pertussis toxin (Ptx), Fila-

mentous Hemagglutinin (FHA), and the type III secretion system

(T3SS).

To directly assess the in vivo impact of Bph colonization on

mice, we intranasally inoculated C57BL/6 6- to 8-week-old

mice with �104 colony-forming units (CFUs) of bacteria and

collected tissues from groups of mice over a 6-month period.

Bph was consistently recovered from the nasal lavage, trachea,

and lung for 3 months after initial colonization (Figure 1B).

Despite this persistent colonization, we did not observe signifi-

cant weight loss in Bph-colonized mice compared to control

mice over a 3-month period (Figure S1A), nor observe sneezing

(Clark et al., 2016; Hayashimoto et al., 2012), tachypnea, poor

grooming, or decreased activity. Consistent with earlier descrip-

tions of Bphmouse colonization and the lack of virulence factors

found in classical bordetellae, these results indicated that Bph

colonization was persistent and associated with a mild pheno-

type (Clark et al., 2016; Dewan et al., 2019; Ivanov et al., 2016;

Perniss et al., 2018).

Colonization with Bph Induces Th17 Cells in the Lung
To better understand the effects of Bph on the host, we per-

formed microscopic examination of the lungs of wild-type (WT)

mice, which demonstrated the formation of lymphoid aggre-

gates, consistent with inducible bronchus associated lymphoid

tissue (iBALT; Marin et al., 2019), that was first detectable

10 days post-colonization, present in all colonized mice by

28 days, and persistent out to 6 months after initial colonization

(Figures 1C, S1B, and S1C). These results imply that Bph elicits

an adaptive immune response that we further investigated by

performing immunophenotyping on lung immune cell popula-

tions. After 28 days of colonization (Figure S1D), we observed

a trend toward an increase in neutrophils in lung tissue, as previ-

ously observed (Clark et al., 2016), accompanied by a decrease

in eosinophils in mice colonized with Bph compared to mice un-

dergoingmock colonization with 104 CFU heat-killed (HK) bacte-

ria (Figures 1D and S1E). This number of HK bacteria equals the

number of bacteria used in the live inoculum and contains

considerably (�10,000 fold) fewer HK bacteria than othermodels

intended to elicit a pulmonary immune response (Amezcua

Vesely et al., 2019; Chen et al., 2011). Among T cell subsets,

effector T cells (Teff) and T regulatory (Treg) cells were increased

in colonized mice compared to controls (Figures 1E and S1F).

Additional characterization of CD4+ T cells by intracellular stain-

ing for cytokines showed that there was amarked increase in the

percentages of IL-17A-expressing (TCRb+CD4+IL-17A+IFNg�,
referred to here as Th17) but not interferon gamma (IFNg)-ex-

pressing (Th1) T cells (Figures 1F, S1G, and S1L) in colonized

mice compared to mock-colonized controls. Examination of

the non-CD4+ T cell immune compartment showed no differ-

ences in IL-17A+ cells between mice that received live or HK

Bph (Figure S1H), nor did we see an increase in transcripts for

the constant regions of T cell receptor gamma (TCRg) or TCRd

(Table S1). Although we cannot absolutely exclude another

in vivo source of IL-17A by ex vivo restimulation and intracellular

cytokine staining, our data are most consistent with an expan-

sion of Th17, rather than gd-T cells, in response to Bph. These

changes in immune cell subtypes within the lung were also

accompanied by increases in Teff, Th17, and Treg cells in the

spleens of Bph-colonized mice, demonstrating that airway colo-

nization was also associatedwith immune changes detectable at

distant tissues (Figures S1I, S1J, and S1K).

Bph Airway Colonization Induces a Th17 Immune
Response
We next performed RNA sequencing (RNA-seq) on whole lungs

from colonized and control mice 7 weeks after inoculation to

determine the effects of Bph colonization on transcriptional

regulation. Analysis of transcriptomic data using gene set enrich-

ment analysis (GSEA) confirmed Bph markedly upregulated

functions involved in the immune response in persistently colo-

nized animals (Figure 2A). The most markedly upregulated

pathway in colonized mice was associated with the intestinal im-

mune response for immunoglobulin A (IgA) production. Examina-

tion of leading-edge genes (i.e., genes driving the enrichment

score) from this pathway showed that many of the most strongly

enhanced transcripts are also associated with iBALT formation,

including genes for mucosal immune activation (Icos, Icosl,

CD40, and CD40lg) and antibody generation (Aicda and Pigr;

Figure 2B, top panel; Table S1). Genes involved in T cell differen-

tiation pathways, including Th17 cell signaling and differentia-

tion, were also enriched in colonized mice compared to controls,

including Th17-associated cytokines Il17a and Il17f, (Figures 2A

and 2B, middle panel), transcription factor (Rorc), and chemo-

kines (Ccl20 and Ccr6; Figure S2), reinforcing the prominent

Th17 signature we observed by immunophenotyping, (Table

S1). Expression of Il22, another major Th17-associated cytokine,

was not detected in the majority (80%) of samples and was not

different between groups (Figure S2). In contrast, colonized

mice demonstrated lower levels of gap-junction-associated

gene transcripts, which may represent increased epithelial

permeability in colonized mice resulting from immune activation

(Figures 2A and 2B, bottom panel; Table S1). We additionally

examined genes associated with T helper cell effector functions.

We observed increases in transcriptional signatures of Th1 (Ifng
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and Tbx21) and Treg (Foxp3) cells but did not observe significant

transcriptional changes in Th2-related genes (Il4, Il5, and Il13;

Figure S2; Table S1).

In order to establish whether the expansion of Th17 cells to

Bphwasmediated by recognition of bacterial antigens displayed

by antigen-presenting cells, we restimulated splenocytes from

mice nasally inoculated with either HK or live Bph, stained

them with carboxyfluorescein succinimidyl ester (CFSE), and

then evaluated for cell division 72 h later. We observed an in-

crease in the proliferation of activated T cells (CFSEloCD25+)

when splenocytes isolated frommice colonizedwith live bacteria

were co-incubated with Bph lysate compared to when spleno-

cytes frommice that received a HK inoculum were co-incubated

with Bph lysate (Figure 3A, bottom versus top rows). Co-incuba-

tion of cultures with an anti-major histocompatibility complex

class II (MHC II) antibody blocked CD4+ T cell proliferation, con-

firming that Bph antigen requires MHC II to induce T cell prolifer-

ation (Figure 3A). Furthermore, ELISA quantification of IL-17A

from the supernatants of restimulated cells from the lung demon-

strated that CD4+ T cells from Bph-colonized mice produced IL-

17A in an antigen- and MHC-class-II-dependent manner (Fig-

ure 3B). IL-17A was not detectable in the supernatant of T cell

cultures from control mice.

To further investigate the importance of an adaptive immune

response in controlling bacterial abundance in the airways, we

colonized WT and RAG1�/� C57BL/6J mice with Bph for

14 days and then sacrificed mice to assess the numbers of bac-

teria within bronchoalveolar lavage (BAL) fluid. We found that

there was significantly greater Bph in the BALs of RAG1�/�

than that of WT mice (Dewan et al., 2019), implicating an adap-

tive immune response in controlling the degree of bacterial colo-

nization (Figure 3C). Interestingly, RAG1�/� mice colonized for

1 month with Bph did not demonstrate overt pneumonia (e.g.,

alveolar infiltrates) by histology (Figure S3A), nor significant

weight loss compared to control mice that received a HK inoc-

ulum (Figure S3B), indicating that although an adaptive immune

response helped control bacterial numbers, innate immune

mechanisms were sufficient to prevent lethality. To further inves-

tigate the role of IL-17A in controlling Bph colonization, we

treated mice with an anti-IL-17A blocking antibody before and

during colonization (Figure 3D, top panel). Consistent with an

important role for Th17 cells during Bph colonization, we found

that mice treated with an anti-IL-17A blocking antibody had

significantly higher titers of bacteria within the BAL and lung tis-

sue than mice treated with an isotype control antibody (Fig-

ure 3D, bottom panel). Similar to RAG1�/� mice, although IL-

17A aided in controlling Bph numbers, its blockade did not result

in systemic effects, such as weight loss (Figure S3C).

Figure 2. Host Transcriptomic Changes Due to Bph Colonization

(A) GSEA of KEGG pathways using whole-lung RNA-seq data from mice that

received either live or HK Bph 52 days after inoculation. Only pathways with an

adjusted p value of <0.05 are shown with their normalized enrichment score.

Analysis was performed in R using the fgsea (Sergushichev, 2016) package.

n = 5/group.

(B) Heatmaps and enrichment plots of selected KEGG pathways. On the left,

enrichment plots for representative KEGG pathways are shown. To the right of

each panel is a heatmap demonstrating normalized read counts and fold

change of select leading-edge genes from each KEGG pathway. Average

normalized read counts for HK (left column) and live (middle column) groups

are shown in gray, and log2-fold change of each gene is shown in the rightmost

column in blue and red. Genes that are significantly enriched are boxed.

Analysis was performed in R using DEseq2.

Statistical significance: GSEA statistic as implemented in fgsea (Sergushichev,

2016) (A) or the Wald test with Benjamini-Hochberg (BH) correction as im-

plemented in DESeq2 in (B).
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Colonization with Bph Reduces Signatures of AAI
We next sought to test how long-term colonization with Bph and

the Th17 response that it evokes would affect a concurrent

allergic inflammatory response. To accomplish this, we colo-

nized mice with Bph for 1 month before sensitizing and intrana-

sally challenging mice to ovalbumin (OVA) (Figure 4A). Charac-

terization of whole-lung tissue by flow cytometry demonstrated

multiple alterations in immune cell populations that were attribut-

able to Bph colonization. As previously seen in Bph-colonized

mice (Figure 1), we noted an increased percentage of Teff pop-

ulations (Figure S4A) and Th17 cells (Figure 4B) in mice undergo-

ing OVA sensitization and challenge (OSC). However, in contrast

to mice undergoing colonization alone, the percentage of Treg

cells was reduced in colonized mice experiencing AAI (Fig-

ure S4B), and we noted no difference in neutrophils (Figure S4C).

We gauged the effect of Bph on AAI by assessing airway hy-

perresponsiveness (AHR), a characteristic feature of asthma, in

colonized and control mice during methacholine challenge.

Colonized mice demonstrated less airway resistance in

response to methacholine challenge at 6.25 mg/ml and higher

doses, indicating reduced AHR in mice with Bph compared to

that in control mice (Figure 4C). These changes in resistance

Figure 3. The Th17 Response to Bph Is Antigen Specific and Aids Controlling Colonization

(A) Left panel: Concatenated flow cytometry plots of cultures of splenocytes of five mice taken 52 days after inoculation with either HK or live Bph. Splenocytes

were loaded with either no protein or Bph proteins from a HK culture. Cells were gated on CD4+TCRb+ cells using CD25 as an activation marker and CFSE as a

proliferation marker. Representative of 2 independent experiments. Right panel: Quantification of CD25+CFSElo T cells from splenocyte cultures as shown in (A).

n = 9–10 mice/group, combined from 2 independent experiments.

(B) IL-17A ELISA of culture supernatants from lungCD4+ T cells co-culturedwith antigen-loaded CD11c+ dendritic cells (DCs). CD4+ T cells were isolated from the

lungs of five mice taken 43 days after inoculation with either HK or live Bph.

(C) CFU of Bph recovered from BALs of WT or RAG1�/� mice 14 days after colonization. n = 10 mice/group, combined from 2 independent experiments.

(D) Top: Schematic of the experimental approach to test the role of IL-17A duringBph colonization. Bottom: CFU ofBph recovered from lung homogenates (CFU/

g), BAL, or nasal lavage (CFU/ml).

(E) ELISA showing SLPI protein expression in the lungs of mice inoculated with Bph and treated with anti-IL-17A monoclonal antibody compared to the isotype

control.

Statistical significance: Kruskal-Wallis followed by post hoc one-tailed paired Wilcoxon rank-sum test with adjustment for multiple hypotheses using BH

correction for (A) and (B) or two-tailed Wilcoxon rank-sum test for (C)–(E). Horizontal lines indicate median values. **p < 0.01; ***p < 0.001.
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Figure 4. Bph Protects from Allergic Airway Inflammation in an Ovalbumin Model

(A) Schematic of the model to test the role of Bph in modulating AAI. Mice were inoculated with either HK or live Bph 4 weeks before starting OSC.

(B) Quantification of flow cytometry for intracellular cytokine staining of IL-17A+IFNg� CD4+ T cells. n = 9–11 mice/group, combined from 2 independent ex-

periments.

(C) Measurement of airway resistance in mice undergoing methacholine challenge after inducing AAI as shown in (A). Experiments were performed using a

Flexivent FX1 system. Points represent mean ± SEM, n = 8 mice/group.

(D) Left: Representative PAS staining of mouse airways in mice initially receiving either an HK or live inoculum and then undergoing OSC. Right: Quantification of

PAS-positive cells normalized to total bronchial epithelial area. n = 8–9 mice/group, combined from 2 independent experiments.

(E) Eosinophils as a percentage of live cells from lung. Eosinophils were defined as Ly6G�CD11b+SiglecF+MHC II�CD11c�SSChi cells. n = 9–11 mice/group,

combined from 2 independent experiments.

(F) qRT-PCR of whole-lung RNA from mice undergoing OSC. Bars represent mean ± SEM, n = 7–8 mice/group.

(legend continued on next page)
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were also associated with reduced elastance and tissue damp-

ing, consistent with decreased AAI in control mice (Figure S4D).

We also examined the effects of Bph colonization on allergic in-

flammatory markers. Periodic-acid-Schiff (PAS) staining, which

identifies goblet cells, of OVA-challenged mice demonstrated

that colonized animals had fewer goblet cells, indicating reduced

goblet cell metaplasia (Figure 4D). Likewise, an analysis of

whole-lung tissue showed that eosinophils, a marker for allergic

inflammation and severity in mouse models, were reduced by

�38% in control compared to those of colonized mice (Fig-

ure 4E). Both eosinophil recruitment and goblet cell metaplasia

are mediated by cytokines produced by Th2 cells, including IL-

4, IL-5, and IL-13. Quantitative RT-PCR (qRT-PCR) of these cy-

tokines confirmed that Il4, Il5, and Il13 transcripts were reduced

in OVA-sensitized and -challenged animals colonized with live

Bph compared to those of HK controls (Figure 4F).

We next wanted to assess if the increased Th17 cells we

observed in Bph-colonized, OVA-challenged mice represented

bacterial-specific Th17 cells or if colonization created an envi-

ronment that enhanced the generation of Th17 cells specific to

OVA. As we observed in mice not exposed to OVA, splenocytes

from colonized mice proliferated when stimulated with Bph ly-

sates compared to those from mice exposed to a HK inoculum

(Figure S3D). Similarly, restimulation of CD4+ T cells isolated

from the lung also proliferated in response to Bph lysates,

showing that Bph-specific T cells persisted in the lungs of colo-

nized mice undergoing OSC (Figure S3E). The Th17 response

that we observed in colonized mice was also selective to Bph

compared to other related bacteria within the same phylum, as

we did not observe any proliferation of T cells (Figure S3E) and

detected only a minimal production of IL-17A in response to re-

stimulation with another Proteobacterium, Escherichia coli

(Figure S3F).

Exposure to Bph lysates also resulted in the production of IL-

17A fromCD4+ T cells isolated from the lung, spleen, mediastinal

lymph node, and mesenteric lymph node of colonized mice. In

contrast, IL-17A production by CD4+ T cells from control mice

was markedly decreased compared to that from colonized

mice, demonstrating that airway colonization resulted in the

dissemination of Bph-specific, IL-17A-secreting T cells system-

ically (Figure S3G).

Given the persistence of a Bph-specific immune response

during AAI, we wanted to assess whether a pre-existing immune

response to an airway bacterium could reduce the degree of

allergic sensitization to OVA and, consequently, prevent AAI.

We first looked at the capacity of colonized and control mice

to generate OVA-specific serum IgE after sensitization and chal-

lenge, by ELISA (Klaßen et al., 2017). We found that colonization

with Bph did not significantly alter the amount of OVA-IgE in the

serum compared to control mice (Figure S4I). We next examined

the T cell response to OVA and found that both colonized and

control mice responded similarly to the restimulation of spleno-

cytes to OVA in vitro, demonstrating similar degrees of prolifera-

tion in response to OVA (Figures S4E and S4F). Furthermore,

splenocytes from both colonized and control mice produced

IL-17A in response to OVA, and although colonized mice pro-

duced slightly more IL-17A in response to restimulation, the

baseline IL-17A production was also higher, suggesting that

the difference between live and HK groups was not OVA depen-

dent (Figure S4G). We observed a similar pattern of IL-17A

production fromCD4+ T cells isolated from the lung and restimu-

lated with OVA, supporting the idea that the increased Th17 cells

we observed in colonized mice undergoing OSC were primarily

directed against Bph (Figure S4H).

Concurrent colonization with Bph could also decrease OVA

presentation within the lung during allergic airway challenge,

potentially accounting for the observed reduction in AAI. To

assess if pre-existing colonization with Bph reduced OVA pre-

sentation in the lung, we injected colonized and control mice

with CD45.1+CD4+ T cells expressing an OVA-specific T cell re-

ceptor (OTII) before sensitizing and challenging mice with OVA

(Figure 4G, top panel). Both colonized and control mice had

similar percentages and numbers of OTII cells in the spleen, sug-

gesting that colonization did not systemically alter the response

to OVA (Figures S5A and S5B). In the lungs of colonized mice

receiving OTII cells, we again observed reduced eosinophils

(Figure 4G, right), but the quantity of OTII T cells recruited to

the lung was no different between colonized and control mice

either by absolute counts (Figure S5C) or as a percentage of

CD4+ T cells (Figure 4G, left). Thus, the antigen presentation of

OVA was likely to be similar regardless of colonization status.

To directly assess the contribution of IL-17A to AAI, we treated

groups of either Bph-colonized or control mice with anti-IL-17A

antibody or isotype control, starting at the time of colonization

and extending throughout OSC (Figures 4H and 4I, top panel).

At the conclusion of the experiment, mice receiving both live

Bph and anti-IL-17A antibody had increased titers of Bph from

their BALs, but not nasal lavages, compared to mice receiving

an isotype control antibody (Figures S5D and S5E). Along with

this increase in bacterial abundance, mice receiving both Bph

and anti-IL-17A lost significantly more weight than mice receiving

the isotype control antibody, regardless of colonization status

(Figure S5F). The increases in bacterial abundance, as well as

the weight loss observed in Bph-colonized mice receiving anti-

IL-17A antibody, imply a protective role of IL-17A in Bph-colo-

nizedmice undergoing allergic airway sensitization and challenge.

To assess the effect of anti-IL-17A treatment on allergic inflam-

mation in the lung, we performed flow cytometry on lung immune

(G) Top: Schematic of the experiment showing that mice were either inoculated with HK or live Bph 20 days before receiving 50,000 naive OTII T cells and then

undergoing OSC. Bottom: Percentage of CD4+ T cells (CD4+) expressing the OT-II receptor (CD45.1+Va2+Vb5+, left panel) and eosinophils as percentage of live

cell (right panel) recruited to the lung. n = 7–8 mice/group, combined from 2 independent experiments.

(H) Top: Schematic of mice inoculated with HK or live Bph receiving anti-IL-17A antibody or an isotype control during colonization and then OSC. Bottom:

Percentage of Th2 cells (defined as TCRb+CD4+CD25�CD44+St2+) as a percentage of CD4+ T cells.

(I) Percentage of Th17 cells (defined as TCRb+CD4+CD25�CD44+CCR6+) as a percentage of CD4+ T cells. n = 5–10 mice/group.

Statistical significance: Mann-Whitney U test for (B), (E), and (G). Wilcoxon rank-sum test for (C), (D), and (F). Kruskal-Wallis test followed by post hoc Wilcoxon

rank-sum test with adjustment for multiple hypotheses using BH correction in (H) and (I). Horizontal lines indicate median values. + p < 0.1; *p < 0.05; **p < 0.01;

***p < 0.001; ****p < 0.0001.
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cells using St2 expressed on Teff (TCRb+CD4+CD25�CD44+St2+,
referred to as Th2 cells hereafter; CD25 was used to exclude Treg

cells expressing St2) as a marker for allergic inflammation. St2, or

IL-33R, is known to be preferentially expressed on Th2 polarized

cells (Löhning et al., 1998) and directly contributes to AAI by help-

ing upregulate Th2 cytokine production (Schmitz et al., 2005). Af-

firming our earlier findings (Figures 4C–4F), we found that mice

colonized with Bph and treated with the isotype control antibody

had signs of reducedAAI,with lower percentages of Th2 cells than

those of HK controls also receiving the isotype antibody (Figures

4H and S5G). Anti-IL-17A treatment reduced the severity of AAI,

as measured by the percentage of Th2 cells in mice receiving a

HK inoculum and treated with anti-IL-17A compared to isotype-

control-antibody-treated mice. Blockade of IL-17A, however,

did not significantly change the percentages of Th2 cells present

in colonized mice, which were significantly reduced compared to

isotype-treated HK mice.

To further understand these findings, we tested for differences

in Th17 cells by examining Teff expressing CCR6, a marker for

Th17 cells (Hirota et al., 2007) (TCRb+CD4+CD25�CD44+CCR6+;
referred to as Th17 cells hereafter). As shown previously (Figures

1F and 4B), mice colonized with Bph had higher levels of Th17

cells than HK mice (Figures 4I and S5H). Anti-IL-17A treatment

reduced percentages of Th17 cells in HK mice when compared

to isotype-treated HK controls. Yet, in Bph-colonized animals,

the anti-IL-17A treatment did not significantly alter the percent-

ages of Th17 cells, suggesting that blockade of IL-17A is insuffi-

cient to reverse the protective effect of Bph colonization.

Although the percentages of Th17 cells in Bph-colonized mice

was not different between anti-IL-17A and isotype control, the in-

crease in bacterial abundance in the airway may provoke a

compensatory immune response that complicates our interpre-

tation of the role of IL-17A in our model of AAI. These results sup-

port the idea that Th17 cells induced by Bph are associated with

protection from AAI but that monoclonal antibodies targeting IL-

17A are inadequate to reverse their effect on AAI.

SLPI Is Regulated by Airway Colonization
To better understand how Bph reduces susceptibility to AAI, we

examined the lung tissue transcriptional profileofmiceundergoing

OSC. This analysis corroborated our observation thatBph coloni-

zation resulted in a reduction inmultiplemarkers of allergic inflam-

mation (see Table S2; Figures 4F and 5A). Notably, the effect on

these Th2 markers was only apparent in mice undergoing AAI

because we noted no differences in expression of Th2-related cy-

tokines in mice not undergoing sensitization and challenge (Fig-

ure S2; Table S1). Similarly, GSEA only identified two Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathways that were

significantly enriched in colonized mice undergoing OSC (Figures

S6A and S6B), neither of which were enriched in colonized mice

not undergoing AAI (Figure 2A). Examination of leading-edge

genes from the IgA protection network and focal adhesion path-

ways identified in Figure 2A showed that these genes were no

longer significantly different inmice undergoingOVA sensitization,

consistent with the effects of AAI reducing the transcriptional sig-

natures associated with colonization (Figure S6C).

To find genes mediating protection from AAI, we sought to

identify transcripts that were upregulated in colonized compared

to control animals, both in mice undergoing colonization only

(Table S1) and in mice undergoing OSC (Table S2). This analysis

revealed that 44 genes were upregulated in both datasets by a

minimum of a 2-log2-fold change with a maximum p value of

0.05 after correction for multiple hypotheses (Figure 5B, trian-

gles). A total of 16 of these 44 transcripts originated from genes

involved in immune system processes (Figures 5A and 5B, blue

triangles). In addition to genes involved in germinal center forma-

tion (Nuggc) and antibody biosynthesis (Jchain), we noted that

Slpi was significantly upregulated by Bph. We confirmed that

the transcriptional upregulation of Slpi was also accompanied

by increased SLPI protein in the lungs ofBph-colonizedmice un-

dergoing OSC (Figure 5C).

Slpi was first characterized as a constitutively expressed in-

hibitor of neutrophil elastase in the lung and has been demon-

strated to be an important antimicrobial peptide in the airway,

with efficacy against both Gram-negative and Gram-positive

bacteria (Hiemstra et al., 1996; Wiedow et al., 1998). Animal

models have directly demonstrated that mice lacking Slpi expe-

rience worsened AAI (Marino et al., 2011) and that endogenously

overexpressed (Raundhal et al., 2015) or exogenously adminis-

tered SLPI (Forteza et al., 2001) can mitigate AAI, indicating

that Slpi may play a protective role in asthma. Although Slpi is

known to be upregulated by innate immune activation through

the functions of tumor necrosis factor alpha (TNF-a) and IL-1b

(Sallenave et al., 1994), we noted that SLPI protein levels corre-

lated with Il17a transcription in the lungs of mice undergoing AAI

and may help to mediate the reduction of AAI observed in Bph-

colonized mice (Figure 5D).

To test the idea that colonizationwithBph increases the expres-

sion of SLPI within the lung through IL-17A, we first used qPCR to

establish that microbial colonization of mice modulates the

expression of Slpi in the lung by comparing conventionally raised

WT, RAG1�/�, and germ-free (GF) C57BL/6 mice either undergo-

ing 2 weeks of colonization with Bph or remaining non-colonized

(Figure 5E). We first confirmed that the transcription of Slpi in WT

micewas significantly upregulated in colonizedmice compared to

controls. In contrast, RAG1�/� mice did not demonstrate

increased Slpi expression in response to Bph colonization, sug-

gesting that the adaptive immune system helps regulate the

expression of SLPI (Figure 5E). These results also showed that

increased Slpi expression in the lung reflects local (rather than

gut) microbial exposure since GF and non-colonized conventional

mice had similar amounts of Slpi expression.

We next asked if the positive regulation of SLPI resulting from

Bph colonization was mediated through IL-17A by treating a hu-

man lung epithelial cell line (A549) with TNF-a, IL-1b, and IL-17A.

We found that although IL-1b and TNF-a alone were sufficient to

upregulate Slpi, IL-17A did not significantly increase Slpi. Incu-

bation of A549 cells with both TNF-a and IL-17A, however,

demonstrated increased Slpi transcription in cells incubated

with both cytokines compared to either one singly (Figure 5F).

To confirm that IL-17A played a role in potentiating SLPI produc-

tion in vivo, we examined mice colonized with Bph and treated

them with a neutralizing monoclonal antibody to IL-17A for

2 weeks (Figure 3D). Compared to mice receiving an isotype

control, colonized mice treated with an anti-IL-17A antibody

showed reduced levels of SLPI in the lungs, as measured by
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ELISA (Figure 3E), supporting a stimulatory effect of IL-17A on

SLPI production in the lung.

SLPI Shapes the Microbial Ecology of the Upper Airway
in Humans
Our results demonstrate that SLPI is regulated by airway micro-

bial colonization in mice and that higher amounts of SLPI are

associated with reduced intensity of AAI we observe in Bph-

colonized mice. In humans, lower expression of SLPI from

epithelial brushings has previously been reported in individuals

with severe asthma (Raundhal et al., 2015). To test the idea

that microbial airway colonization could modulate the produc-

tion of SLPI within the airway, we first selectively cultured nasal

lavage specimens from adults and children with moderate to

Figure 5. SLPI Is Regulated by Colonization and Mediates Protection from AAI

(A) Heatmap of immune genes regulated byBph colonization inmice undergoing AAI. Average normalized read counts for each group are shown in gray, and log2-

fold change in mice that received a live, compared to an HK, inoculum for each gene is shown in blue, white, and red. n = 3–5 mice/group.

(B) Volcano plot of whole-lung transcriptomic data from mice that received either an HK or live Bph inoculum and then underwent OSC (as shown in Figure 4A).

Genes depicted as triangles were significantly enriched in colonizedmice not undergoing AAI. Genes involved in an immune system process (defined by theGene

Ontogeny [GO] pathway, GO: 0002376) are shown in light blue and are also depicted in the heatmap shown in (A). n = 3–5 mice/group.

(C) ELISA showing SLPI protein expression in the lungs of mice inoculated with live Bph followed by AAI compared to those inoculated with HK. n = 7–8 mice/

group.

(D) Correlation between SLPI protein expression and fold change in Il17ameasured by qRT-PCR in the lungs of mice inoculated with HK or live Bph, followed by

AAI. n = 7–8 mice/group

(E) qRT-PCR of SLPI from the whole lungs from germ-free, RAG1�/�, and conventionally raised WT mice. n = 9–10 mice/group.

(F) Transcription of Slpi in human alveolar epithelial cell line A549 in response to cytokine stimulation. Cells were treated with 1 ng/ml IL-1b, 100 ng/ml IL-17A, and/

or 10 ng/ml TNF-a as shown. Experiment performed in n = 5 biological replicates, each representing the average of 3 technical replicates.

Statistical significance: Wald test with BH correction as implemented in DESeq2 in (A) and (B); Wilcoxon rank-sum test for (C); Spearman’s rank test in (D); or

Kruskal-Wallis test followed by post hoc two-tailed paired Wilcoxon rank-sum test with adjustment for multiple hypotheses using BH correction in (E) and (F).

Boxes indicate 25th and 75th percentiles and whiskers are 1.5 3 interquartile range. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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severe asthma or healthy controls (from the Microbiota in

Asthma Research Study [MARS]; see Table S3 for demographic

data) for Haemophilus, Streptococcus, and Moraxella airway

bacteria previously associated with asthma. Overall, we noted

that children demonstrated higher recovery of Haemophilus

and Streptococcus (p < 0.0001 for each comparison, Fisher’s

exact test) from nasal lavage than adults regardless of health sta-

tus (Table 1). Consistent with prior reports of other respiratory

microbiologic surveys in asthma (Bisgaard et al., 2007; Durack

et al., 2017), we recovered Haemophilus more frequently from

nasal lavages from adults and children with asthma than healthy

controls (Table 1).

We did not observe any significant differences in nasal lavage

SLPI abundances between healthy and asthmatic populations

(Thijs et al., 2015; Figure S7A). However, we next performed an

exploratory analysis to ask if nasal lavage SLPI corresponded

with asthma control by comparing Asthma Control Test (ACT)

scores, a clinically validated survey of symptom control in asth-

matics (Nathan et al., 2004). This analysis showed that in adult

asthmatics, better asthma control (corresponding to higher

ACTscores) corresponded to higher nasal SLPI levels, consistent

with a protective role for SLPI in asthma (Figure 6A). We also

observed a relationship between SLPI and Haemophilus upper

airway colonization across the adult and pediatric populations

by showing a positive correlation between SLPI nasal concentra-

tion and the titers ofHaemophilus recovered from colonized indi-

viduals (Figure 6B). These differences did not appear to be due to

the amount of corticosteroid usage because we observed no dif-

ference in nasal SLPI levels in asthmatics between those with the

highest inhaled corticosteroid doses and those with lower doses

(p = 0.8, Wilcoxon rank-sum test; Table S3).

Together, these results show that SLPI abundance in the nasal

passages is correlated both with the presence of Haemophilus

and a clinical correlate of asthma control. Although SLPI levels

in the airway are known to bemodulated by bacterial colonization

and infection (Parameswaran et al., 2011), we hypothesized that

airway microbial community composition, as a whole, would

also influence SLPI abundance. To test a relationship between

SLPI levels and microbial community composition, we quantified

SLPI and performed V4-16S rRNA sequencing on oral lavage

samples from MARS participants. Similar to the nasal lavage

specimens, we did not observe a difference in SLPI from oral

lavage specimens (Figure S7B). 16S rRNA analysis showed that

the composition of these oral microbial communities was consis-

tent with prior surveys of oral microbial communities (Aas et al.,

2005), showing that these communities were made up largely of

Streptococcus, Veillonella, and Prevotella species (Figure S7C).

We did not discern any differences in alpha diversity (Figure S7D)

nor community composition (Figure S7E) in the microbial ecology

of oral lavage specimens between the different cohorts. To test

the idea that SLPI abundances in oral lavage samples would

reflect microbial community composition, we built a supervised

learningmodel from healthy adults and children (n = 55) to predict

oral SLPI levels based on 16S rRNA abundance data. We first

identified 11 taxa (Figure 6D) that were important for predicting

SLPI abundances using random forest (Liaw and Wiener, 2002).

These taxa were used to build a model that explained 40% of

the variance in the oral lavage SLPI levels measured by ELISA

(Figure 6C). This correlation was maintained after a 10-fold

cross-validation, indicating that overfitting plays a limited role in

the success of the model (Figure 6C, inset). Of the 11 taxa that

we included in our model (Figure 6D), some of these bacteria or

their close relatives have previously been noted to elicit, or be sus-

ceptible to, SLPI in vitro (e.g., Neisseria; Cooper et al., 2012).

DISCUSSION

Asthma is known to be shaped by a myriad of genetic factors,

environmental factors, and—increasingly—microbial exposures.

Although components of the airway microbiota have been previ-

ously associated with enhanced susceptibility to asthma, our

findings point to a complex and potentially beneficial role of

some bacteria within the airway. In this study, we show that

airway colonization of mice with Bph, a murine-adapted bacte-

rium, elicits a Th17 immune response that aids in controlling bac-

terial abundance in the airway. Furthermore, we show that when

animals undergo AAI challenge, mice previously colonized with

Bph demonstrate protection from AAI. Colonization with Bph

does not appear to impact the degree of allergic sensitization

nor the presentation of allergen in the lung, but our results do sug-

gest an effect of colonization on Th2 polarization and blunting of

allergic effector cell recruitment. In contrast to other studies that

have emphasized the potentially deleterious roles of allergen-

specific T cells polarized to Th17 in AAI (McKinley et al., 2008;

Wakashin et al., 2008), our results show that immune responses

to airway bacteria co-exist with immune responses to allergens

and could counteract allergic responses. Although we were un-

able to demonstrate a direct protective role of IL-17A induced

by Bph, this could be explained in part by the dual effect of

anti-IL-17A on both bacterial colonization and AAI. Because

anti-IL-17A treatment results in increased Bph titers, this wors-

ened infection may offset the effects of IL-17A blockade by

Table 1. Recovery of Haemophilus, Streptococcus, and Moraxella from the Nasal Lavage of MARS Participants

Genus

Adult and Pediatric Adult Pediatric

Asthma

(34)

Healthy

(55)

p

value

adjusted

(adj.) p

value

Asthma

(16)

Healthy

(35)

p

value

adj. p

value

Asthma

(18)

Healthy

(20)

p

value

adj. p

value

Haemophilus 76% 35% 0.00017* 0.0015* 50% 11% 0.0047* 0.021* 100% 75% 0.048* 0.14

Streptococcus 65% 49% 0.19 0.28 38% 31% 0.75 0.84 89% 80% 0.66 0.84

Moraxella 12% 2% 0.068 0.15 0% 0% 1 1 22% 5% 0.17 0.28

Statistical significance: Fisher’s exact test with adjustment for multiple hypotheses using BH correction.
*Denotes significance.
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further stimulating a bacterial Th17 immune response, which is

consistent with our observation that Th17 cells were not reduced

in colonized mice treated with anti-IL-17A (Figure 4I). Alterna-

tively, recent advances have shown that blocking IL-17A may

lead to a compensatory upregulation of other Th17-related

cytokines in some types of Th17 cells, which could also mitigate

the effects of anti-IL-17A antibodies (Chong et al., 2020).

Together, our data support previously described protective roles

for Th17 in blunting allergic effector responses (Schnyder-Can-

drian et al., 2006) but additionally implicate immune responses

to airway commensals as a potential source for this Th17

response.

Figure 6. SLPI Levels in Human Upper Airways Are Regulated by the Microbiota

(A) Correlation of ACT score to nasal lavage SLPI from adult asthmatics.

(B) Correlation of SLPI to recovery of Haemophilus in nasal lavage fluid. All individuals with and without asthma from both adult and pediatric cohorts that had

Haemophilus colonization were included in this analysis.

(C) Oral lavage microbial community composition predicts SLPI levels. V4-16S data from healthy human children and adults were used to construct a Random

Forest model to predict SLPI levels based on the abundance of 11 amplicon sequence variants (ASVs). Ten-fold cross-validation of this model performed

comparably to the complete model (inset).

(D) The taxonomic assignments andmean increase in mean square error (MSE) of ASVs included in the Random Forest model depicted in (C). Themean increase

in MSE is an estimate of the importance of each taxon to the Random Forest model.

Statistical significance: Spearman’s rank-order correlation for (A) and (B); or Pearson’s correlation in (C). Boxes indicate 25th and 75th percentiles and whiskers

are 1.5 3 interquartile range.
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During Bph colonization, we observed that the Th17 response

was associated with increased expression of antimicrobial pep-

tides, including SLPI, in the lung. Although SLPI is known to be

regulated by TNF-a and IL-1b (Sallenave et al., 1994), we show

that its expression is enhanced by IL-17A in vitro and in vivo.

The potential of SLPI tomitigate AAI hasbeen appreciated for de-

cades (Wright et al., 1999), and low SLPI airway levels have been

previously noted in severe asthma (Raundhal et al., 2015). A

direct protective role of SLPI in AAI has been shown in animal

models demonstrating that mice lacking SLPI have increased

Th2 polarization markers, increased eosinophil recruitment, and

worsened measures of AHR (Marino et al., 2011). The molecular

and cellular targets of SLPI still require additional investigation.

SLPI is known to have the ability to directly penetrate cells to

inhibit nuclear factor kB (NF-kB) signaling (Taggart et al., 2005),

and exogenously administered SLPI (Wright et al., 1999), as

well as SLPI expressed from a transgene (Marino et al., 2011;

Raundhal et al., 2015), reduces eosinophilic inflammation in

models of AAI. Additionally, SLPI has been demonstrated to be

an endogenous regulator of eosinophil and basophil function by

inhibiting Toll-like receptor 4 (TLR4) signaling in allergic inflam-

mation (Matsuba et al., 2017). However, more studies investi-

gating the tissue-specific effects of SLPI resulting from airway

bacterial colonization will be needed to address which cell types

and molecular targets are affected by SLPI and mediate protec-

tion from AAI. Along with our findings that SLPI shapes upper

airway microbial ecology and is enhanced by IL-17A, this sug-

gests an important role for Th17 responses in regulating airway

microbiota composition that may, in turn, affect AAI severity.

Our results help improve our understanding of the nature of

airwaymicrobe-immune interactions in human asthma and could

have clinical ramifications. IL-17A and its associated effector

functions, such as neutrophilia, are currently being investigated

as both biomarkers for particular asthma endotypes and thera-

peutic targets. However, preliminary studies targeting IL-17A in

asthma have not proven to be uniformly efficacious, potentially

indicating varied roles of Th17 responses in asthma. Our findings

directly demonstrate that although a blockade of IL-17A reduced

markers of AAI in non-colonized mice, this protective response

was lost upon bacterial airway colonization withBph. This micro-

biota-mediated variability in response to anti-IL-17A therapy

could be clinically relevant as better understanding the interplay

between airway microbes and AAI could help define individuals

that are likely to benefit from IL-17A-targeted therapies.

In our clinical study, we observed an increased prevalence of

colonization with Haemophilus in asthmatics in both our pediat-

ric and adult cohorts. Interestingly, the quantity of SLPI was

associated both with individual bacteria in nasal specimens

and overall microbial community composition from oral lavages.

Combined with observations that SLPI abundance in the airway

is modulated during infection (Parameswaran et al., 2011; Pers-

son et al., 2017), we propose that regulation of SLPI expression

is a crucial mechanism underlying homeostasis between the res-

piratory microbiota and the airway mucosal immune system. In

addition to its correlation to Haemophilus in the upper airway,

SLPI tended to be lower in adult subjects with poor asthma con-

trol. Although our finding that SLPI levels were increased with

Haemophilus abundance may seem at odds with the previously

described role of Haemophilus in severe asthma (Goleva et al.,

2013; Simpson et al., 2016), we note that the correlation between

SLPI and Haemophilus included both healthy and asthmatic in-

dividuals. One interpretation of our data is that the relationship

between SLPI and Haemophilus may differ between healthy

and asthmatic individuals, as evidenced by the ability of Haemo-

philus to alter the behavior of the immune system in the context

of airway inflammation (Shilts et al., 2020). Furthermore, patients

from the MARS study were limited to those with moderate to se-

vere asthma without an ongoing exacerbation and do not

represent the entire spectrum of asthma phenotypes and Hae-

mophilus colonization. Nevertheless, our data suggest that

SLPI expression is part of a regulatory response associated

with Haemophilus colonization and that appropriate expression

in the context of airway colonization is part of a beneficial

response that leads to better controlled asthma.

A potential limitation of our study is that Bph itself is not a

known human airway colonizer. Although other members of

the Bordetella genus can colonize the airways, their relationship

to asthma is less well characterized than HSM organisms.

Nevertheless, in contrast to human airway microbes, the persis-

tent colonization of Bph in the airways without inducing an overt

pneumonia, combinedwith its potent ability to alter immunity, of-

fers a perspective of respiratory bacteria as potentially benefi-

cial, rather than detrimental, in asthma. Bph’s unique adaptation

to themurine airway couldmake it a powerful tool to advance our

understanding of airwaymicrobe-immune interactions important

in respiratory inflammatory diseases. An additional limitation

from our human study was that we only observed a correlation

between SLPI and asthma control in our adult cohort. This could

be the result of the small sample size or differences in asthma

control between our adult and pediatric cohorts (adults tended

to have poorer asthma control), or it could indicate differences

in the immune responses associated with asthma between adult

and pediatric populations. In addition to addressing the role of

SLPI in pediatric populations, future human studies will be

needed to confirm the relationship between upper airway micro-

bial ecology and SLPI using culture-independent methods and

to determine the specific immune signatures, such as IL-17A,

associated with SLPI production in asthma.

Overall, our findings support a key role of airway microbes in

shaping the severity and character of AAI responses. In the

context of our increasing recognition of asthma as a clinically

and immunologically heterogeneous disease, our results empha-

size the importance of taking the resident airway microbiota into

account when evaluating immune responses in the context of

asthma. Differentiating Th17 responses directed against exoge-

nous allergens versus those directed at colonizing airway bacteria

may prove to have an important impact on how we interpret the

role of Th17 responses in asthma. We propose that SLPI’s multi-

factorial role as a microbiota-responsive, immune-modulatory

protein makes it a biomarker for dissecting the relationships be-

tween airway microbial communities and asthma.

STAR+METHODS

Detailed methods are provided in the online version of this paper
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Östling, J., van Geest, M., Schofield, J.P.R., Jevnikar, Z., Wilson, S., Ward, J.,

Lutter, R., Shaw, D.E., Bakke, P.S., Caruso, M., et al. (2019). IL-17-high asthma

with features of a psoriasis immunophenotype. J. Allergy Clin. Immunol. 144,

1198–1213.

Parameswaran, G.I., Sethi, S., and Murphy, T.F. (2011). Effects of bacterial

infection on airway antimicrobial peptides and proteins in COPD. Chest 140,

611–617.

Patnode, M.L., Bando, J.K., Krummel, M.F., Locksley, R.M., and Rosen, S.D.

(2014). Leukotriene B4 amplifies eosinophil accumulation in response to nem-

atodes. J. Exp. Med. 211, 1281–1288.

Perniss, A., Schmidt, N., Gurtner, C., Dietert, K., Schwengers, O., Weigel, M.,
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

FITC anti-mouse CD4 (Clone GK1.5) Biolegend Cat# 100406; RRID: AB_312691

FITC anti-mouse CD11c (Clone N418) Biolegend Cat# 117306; RRID: AB_313775

PE anti-mouse CD44 (Clone IM7) BD PharmigenTM Cat# 553134; RRID: AB_394649

PE anti-mouse SiglecF (Clone E50-2240) BD PharmigenTM Cat# 562068; RRID: AB_10896143

PE anti-mouse IL-17A (Clone TC11-18H0.1) Biolegend Cat# 506904; RRID: AB_315464

PerCP-CyTM5.5 anti-mouse TCR b chain

(Clone H57-597)

BD PharmigenTM Cat# 560657; RRID: AB_1727575

PerCP anti-mouse CD45 (Clone 30-F11) Biolegend Cat# 103129; RRID: AB_893343

PE/Cyanine7 anti-mouse IFNg (Clone

XMG1.2)

Biolegend Cat# 505825; RRID: AB_1595591

PE-CyTM7 anti-mouse CD11b (Clone M1/

70)

BD PharmigenTM Cat# 552850; RRID: AB_394491

PE/Cyanine7 anti-mouse CD62L (Clone

MEL-14)

Biolegend Cat# 104418; RRID: AB_313103

APC anti-mouse Ly6G (Clone 1A8) Biolegend Cat# 127613; RRID: AB_1877163

APC anti-mouse CD4 (Clone RM4-5) Biolegend Cat# 100516; RRID: AB_312719

APC anti-mouse TNFa (Clone MP6-XT22) BD PharmigenTM Cat# 561062; RRID: AB_2034022

APC anti-mouse TCR b chain (Clone H57-

597)

Biolegend Cat# 109212; RRID: AB_313435

APC anti-mouse CD45 (Clone 30-F11) Biolegend Cat# 103112; RRID: AB_312977

APC/Cyanine7 anti-mouse TCR b chain

(Clone H57-597)

Biolegend Cat# 109220; RRID: AB_893624

APC/Cyanine7 anti-mouse CD25 (Clone

PC6)

Biolegend Cat# 102026; RRID: AB_830745

APC/Cyanine7 anti-mouse I-A/I-E (Clone

M5/114.15.2)

Biolegend Cat# 107627; RRID: AB_1659252

eFluor450 anti-mouse FoxP3 (Clone FJK-16

s)

Thermo Fisher Scientific (eBioscienceTM) Cat# 48-5773-82; RRID: AB_1518812

eFluor450 anti-mouse IL-13 (Clone 13A) Thermo Fisher Scientific (eBioscienceTM) Cat# 48-7133-80; RRID: AB_11219690

Brilliant Violet 421TM anti-mouse F4/80

(Clone BM8)

Biolegend Cat# 123131; RRID: AB_10901171

APC/Cyanine7 anti-mouse/human CD45R/

B220 (Clone RA3-6B2)

Biolegend Cat# 103224; RRID: AB_313007

Brilliant Violet 421TM anti-mouse CD45.1

(Clone A20)

Biolegend Cat# 110731; RRID: AB_10896425

PE anti-mouse TCR Va2 (Clone B20.1) Biolegend Cat# 127807; RRID: AB_1134184

PerCP/Cyanine5.5 anti-mouse TCR Va2

(Clone B20.1)

Biolegend Cat# 127813; RRID: AB_1186118

APC anti-mouse TCR Vb5.1, 5.2 (Clone

MR9-4)

Biolegend Cat# 139505; RRID: AB_10897800

PE/Cyanine7 anti-mouse TCR Vb5.1, 5.2

(Clone MR9-4)

Biolegend Cat# 139507; RRID: AB_2566020

PE anti-mouse IL-4 (Clone 11B11) Thermo Fisher Scientific (eBioscienceTM) Cat# 12-7041-82; RRID: AB_466156

Biotin anti-mouse CD11c (Clone N418) Biolegend Cat# 117304; RRID: AB_313773

Biotin anti-mouse CD4 (Clone RM4-4) Biolegend Cat# 116010; RRID: AB_2561504
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rat anti-mouse CD16/CD32 (Clone 2.4G2) BD Bioscience Cat# 553141; RRID: AB_394656

LEAF TM Purified anti-mouse I-A/I-E (Clone

M5/114.15.2)

Bioegend Cat# 107610; RRID: AB_2813968

Mouse anti-Ovalbumin antibody (Clone

2C6)

Bio-Rad Cat# MCA2259; RRID: AB_2285753

Rat Anti-Mouse IgE-HRP (Clone 23G3) SouthernBiotech Cat# 1130-05; RRID: AB_2794618

InVivomAb anti-mouse IL-17A(Clone 17F3) BioXcell Cat# BE0173; RRID: AB_10950102

InVivomAb mouse IgG1 isotype control,

unknown specificity(Clone MOPC21)

BioXcell Cat# BE0083; RRID: AB_1107784

BUV737 Anti-mouse CD19 (Clone 1D3) BD Biosciences Cat# 612782; RRID: AB_2870111

BUV395 Anti-mouse CD45 (Clone 30-F11) BD Biosciences Cat# 565967; RRID: AB_2739420

BV750 Anti-mouse CD69 (Clone H1.2F3) BD Biosciences Cat# 747481; RRID: AB_2872156

Pacific BlueTM Anti-mouse/human CD44

(IM7)

Biolegend Cat# 103019; RRID: AB_493682

Super Bright 436 Anti-mouse CD80 (Clone

16-10A1)

Thermo Fisher Scientific (eBioscienceTM) Cat# 62-0801-80; RRID: AB_2716995

Brilliant Violet 421TM Anti-mouse CD196

(CCR6) (Clone 29-2L17)

Biolegend Cat# 129817; RRID: AB_10898320

BD HorizonTM BV480 Anti-mouse CD103

(Clone M290)

BD Biosciences Cat# 566201; RRID: AB_2739592

Brilliant Violet 510TM Anti-mouse CD183

(CXCR3) (Clone CXCR3-173)

Biolegend Cat# 126527; RRID: AB_2562204

Brilliant Violet 570TM Anti-mouse Ly6G

(Clone 1A8)

Biolegend Cat# 127629; RRID: AB_10899738

Brilliant Violet 605TM Anti-mouse CD8a

(Clone 53-6.7)

Biolegend Cat# 100743; RRID: AB_2561352

Brilliant Violet 650TM Anti-mouse CD11b

(Clone M1/70)

Biolegend Cat# 101239; RRID: AB_11125575

Brilliant Violet 711TM Anti-mouse I-A/I-E

(MHCII) (Clone M5/114 15.2)

Biolegend Cat# 107643; RRID: AB_2565976

Brilliant Violet 785TM Anti-mouse CD11c

(Clone N418)

Biolegend Cat# 117335; RRID: AB_11219204

Alexa Fluor 532 Anti-mouse CD4 (Clone

RM4-5)

Thermo Fisher Scientific (eBioscienceTM) Cat# 58-0042-82; RRID: AB_11218891

PerCP-eFluor710 Anti-mouse CD64 (Clone

X54-5/7.1)

Thermo Fisher Scientific (eBioscienceTM) Cat# 46-0641-80; RRID: AB_2735015

FITC Anti-mouse IgE (Clone RME-1) Biolegend Cat# 406905; RRID: AB_493288

FITC Anti-mouse FcεRIa (Clone MAR-1) Biolegend Cat# 134305; RRID: AB_1626102

PerCP/Cyanine5.5 Anti-mouse CD193

(CCR3) (Clone J073E5)

Biolegend Cat# 144515; RRID: AB_2565741

PE/DazzleTM 594 Anti-mouse CD25 (Clone

PC61)

Biolegend Cat# 102047; RRID: AB_2564123

PE/Cyanine5 Anti-mouse CD117 (ckit)

(Clone 2B8)

Biolegend Cat# 105809; RRID: AB_313218

APC/FireTM 750 anti-mouse TCR b chain

(Clone H57-597)

Biolegend Cat# 109245; RRID: AB_2629696

Alexa Fluor 700 Anti-mouse NK 1.1 (Clone

PK136)

Biolegend Cat# 108729; RRID: AB_2074426

APC Anti-mouse CD194 (CCR4) (Clone

2G12)

Biolegend Cat# 131211; RRID: AB_1279135

Anti-mouse IL-33Ra (St2) Biotin (Clone

DIH9)

Biolegend Cat# 145307; RRID: AB_2565735
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-mouse CD11c (Clone N418) STEMCELL Technologies (Easysep) Cat# 60002BT.1

Bacterial and Virus Strains

Bordetella pseudohinzii strain 2-1 and 5-5 Isolated from two different male C57BL/6J

mice bred in house

NA

Streptococcus,Moraxella andHaemophilus Isolated from nasal lavage fluid of asthmatic

and non-asthmatic individuals. Nasal

lavage fluid were plated onto

Streptococcus selective agar (BBL),

M. catarrhalis selective agar (Remel), and

Haemophilus selective agar (Remel).

NA

Escherichia coli (DH5a) ATCC Cat# 98489

Biological Samples

Nasal and oral lavages were obtained from

both an adult (ages 18-40 years) and a

pediatric population (ages 6-10 years).

The study cohorts came from the

Microbiota in Asthma Research Study

(MARS

NA

Chemicals, Peptides, and Recombinant Proteins

RPMI-1640 Medium Milipore Sigma (Sigma Aldrich) Cat# R8758

DMEM, low glucose, pyruvate Thermo Fisher Scientific (GIBCOTM) Cat# 11885084

Trypsin Thermo Fisher Scientific (GIBCOTM) Cat# 25300-54

Fetal Bovine Serum Thermo Fisher Scientific (GIBCOTM) Cat# 26140-079

2-Mercaptoethanol Milipore Sigma (Sigma Aldrich) Cat# M3148

ACK Lysing Buffer Thermo Fisher Scientific (GIBCOTM) Cat# A10492-01

HBSS, no calcium, no magnesium, no

phenol red

Thermo Fisher Scientific (GIBCOTM) Cat# 14175079

Albumin from chicken egg white

(Ovalbumin) - Grade V

Milipore Sigma (Sigma Aldrich) Cat# A5503

ImjectTM Alum Adjuvant Thermo ScientificTM Cat# 77161

Acetyl-b-methylcholine chloride Milipore Sigma (Sigma Aldrich) Cat# A2251

DNase I Milipore Sigma (Roche) Cat# 10104159001

LiberaseTM DL Research Grade Milipore Sigma (Roche) Cat# 5401160001

Defib sheep blood HemoStat Laboratories Cat# DSB050

BD Difco Brain Heart Infusion Agar Fisher Scientific (BD) Cat# DF0418-07-9

BD BBL Prepared Plated Media: Group A

Selective Strep Agar with 5% Sheep Blood

(ssA)

Fisher Scientific (BD) Cat# L21779

Remel Catarrhalis Selective Medium Thermo Fisher Scientific Cat# R01575

Remel Haemophilus Isolation Agar w/

bacitracin and horse blood

Thermo Fisher Scientific Cat# R01470

Phosphate Buffered Saline (PBS) 10X

Powder

Fisher Scientific Cat# BP665-1

Phenol/Chloroform/Isoamyl Alcohol Fisher Chemical Cat# BP1752I400

TritonTM X-100 Milipore Sigma (Sigma Aldrich) Cat# T8787

TRIzolTM Reagent Thermo Fisher Scientific (InvitrogenTM) Cat# 15596018

32% Paraformaldehyde Fisher Scientific (Electron Microscopy

Sciences)

Cat# 50-980-494

Penicillin-Streptomycin Milipore Sigma (Roche) Cat# 11074440001

Phorbol 12-myristate 13-acetate (PMA) Milipore Sigma (Sigma Aldrich) Cat# P8139

Ionomycin from Streptomyces conglobatus Milipore Sigma (Sigma Aldrich) Cat# I9657

Brefeldin A Thermo Fisher Scientific Cat# 00-4506-51

Monensin Thermo Fisher Scientific Cat# 00-4505-51

PowerSYBR Green PCR Master Mix Thermo Fisher Scientific Cat# 4367659
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant Human IL-1b Biolegend Cat# 579402

Recombinant Human TNFa Biolegend Cat# 570102

Recombinant Human IL-17A Biolegend Cat# 570502

Streptavidin BUV563 BD Biosciences Cat# 612935

Critical Commercial Assays

ELISA MAX Standard Set Mouse IL-17A Biolegend Cat# 432501

ELISA MAX Standard Set Mouse IL-4 Biolegend Cat# 431101

RNAeasy Mini kit QIAgen Cat# 74104

QubitTM Protein Assay Kit Thermo Fisher Scientific Cat# Q33211

NEBNext� Ultra II Directional RNA Library

Prep Kit for Illumina�
New England Biolabs Cat# E7760S

Mouse SLPI DuoSet ELISA R&D Systems Cat# DY1735-05

EasySep Mouse CD4 Positive Selection Kit

II

STEMCELL technologies (Easysep) Cat# 18952

EasySep Mouse CD11c Positive Selection

Kit II with Spleen Dissociation Medium

STEMCELL Technologies (Easysep) Cat# 18781

Human SLPI DuoSet ELISA R&D Systems Cat# DY1274-05

Quant-it Ribogreen RNA assay kit InvitrogenTM Cat# R11490

High-Capacity cDNA Reverse Transcription

Kit

Thermo Fisher Scientific Cat# 4368814

NucleoSpin RNA XS, Micro kit Macherey-Nagel Cat# 740902.50

CellTrace CFSE Cell Proliferation Kit Thermo Fisher Scientific (InvitrogenTM) Cat# C34554

LIVE/DEAD Fixable Aqua Dead Cell Stain

Kit, for 405 nm excitation

Thermo Fisher Scientific (InvitrogenTM) Cat# L34966

NucleoSpin RNA XS Machery-Nagel Cat# 740902.50

Deposited Data

Sequencing data This paper European Nucleotide Archive,

PRJEB36780

Experimental Models: Cell Lines

A549 (Human alveolar epithelial

adenocarcinoma)

ATCC Cat# CCL-185

B16-FLT3L expressing melanoma cells Mach et al., 2000 NA

Experimental Models: Organisms/Strains

Mouse: WT C57BL/6J: C57BL/6J The Jackson Laboratory (Bar Harbor, ME) Cat# 000664

Mouse: RAG1�/� C57BL/6J: B6.129S7-

Rag1tm1Mom/J

The Jackson Laboratory (Bar Harbor, ME) Cat# 002216

Mouse: OTII: OTII Rag1+/� Ly5.1+/� Foxp3-

GFP

bred in house NA

Mouse: Germ-free C57BL/6J: WT C57BL/

6J

bred in house NA

Software and Algorithms

R version 3.5.3 or higher R Development Core Team, 2011 https://www.r-project.org/

FlowJo v10 BD RRID: SCR_008520, https://www.flowjo.

com/solutions/flowjo/downloads

GraphPad Prism 8 GraphPad software RRID: SCR_002798, https://www.

graphpad.com/scientific-software/prism/

BD FACSDivaTM software BD Bioscience RRID: SCR_001456

SPAdes version 3.11.0 Bankevich et al., 2012 https://cab.spbu.ru/software/spades/

BLAST version 2.6.0 Altschul et al., 1990. https://blast.ncbi.nlm.nih.gov/Blast.cgi
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andrew

Kau (akau@wustl.edu).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data and Code Availability
The accession number for the sequencing data from RNA-seq, genome sequencing assemblies, and 16S rRNA sequencing reported

in this paper is European Nucleotide Archive: PRJEB36780.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
The study cohorts came from the Microbiota in Asthma Research Study (MARS), which was designed to investigate the contribution

of the human airway and gutmicrobiota to asthma. Both an adult (ages 18-40 years) and a pediatric population (ages 6-10 years) were

recruited from the St. Louis, Missouri area. Inclusion criteria for the asthmatic cohort included: (1) A physician diagnosis of moderate-

to-severe asthma. We also used a prescription of either a medium to high dose inhaled corticosteroid, or a combination of inhaled

corticosteroid with either a leukotriene antagonist or long-acting beta-agonist as evidence of moderate to severe asthma (This cor-

responds to step 3 of the Expert Panel Report 3 guidelines (National Asthma Education and Prevention Program, 2007). (2) Evidence

of allergic sensitization with at least one positive skin prick test to a panel of aeroallergens or by the presence of aeroallergen-specific

serum IgE. (3) A recent prescription of a course of oral corticosteroids within two years of enrollment. The healthy cohort included

individuals without a self-reported history of wheezing or shortness of breath within 1 year of recruitment or a history of asthma,

allergic rhinitis, food allergy or eczema. Additionally, both asthmatic and healthy study participants were excluded if they received

antibiotics within 30 days of their study visit, if they had major surgery on the sinuses, lung or gastrointestinal tract or if they had

another serious medical condition other than asthma. All samples described in this study were obtained during the enrollment visit

when asthmatic subjects were not experiencing an exacerbation, as defined by the need for oral corticosteroids. Written informed

consent documents were obtained from all patients or their legal guardians, and the protocol was approved by the Washington Uni-

versity Institutional Review Board (IRB ID# 201412035).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Ensembl, GRCm38.p6, release 98 Hunt et al., 2018 ftp://ftp.ensembl.org/pub/release-98/fasta/

mus_musculus/dna/

bowtie2 version 2.3.4.1 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

htseq version 0.9.1 Anders et al., 2015 https://htseq.readthedocs.io/en/master/

DESeq2 version 1.22.2 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

fgsea version 1.8 Sergushichev, 2016 https://bioconductor.org/packages/

release/bioc/html/fgsea.html

gage version 2.32.1 Luo et. al 2009 https://www.bioconductor.org/packages/

release/bioc/html/gage.html

Aperio ImageScope software Leica Byosystems RRID:SCR_014311

DADA2 (version 1.10.1 in R) Callahan et al., 2016 https://benjjneb.github.io/dada2/

phyloseq (version 1.28.0) in R (version 3.6.1) McMurdie and Holmes, 2013. https://joey711.github.io/phyloseq/

randomForest v 4.6-14 Liaw and Wiener, 2002 NA

Boruta version 6.0.0 Rudnicki and Kursa, 2009 https://cran.r-project.org/web/packages/

Boruta/index.html

biomaRt version 2.38.0, ensmebl archive

Sept 2019

Durinck et al., 2009 https://bioconductor.org/packages/

release/bioc/html/biomaRt.html
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Oral lavage samples were obtained by having each subject swish 20mL of sterile saline in their mouth for 30 s before spitting into a

sterile container for further processing. Nasal lavage specimens were collected as described (Allen et al., 2013). Briefly, 5mL of sterile

saline was instilled into each nostril while the participant has his/her head tilted backward. After 5 s, the patient tilted their head for-

ward and the nasal lavage fluid was collected into a sterile cup. To minimize the saline running into the back of subjects’ throats, we

had patients repeat the sound ‘‘k-k-k’’ after administering saline. Separate oral and nasal lavage aliquots were either stored without

additional processing (used for ELISA) or with a final concentration of 15% glycerol (for bacterial culture) and then stored at �80 C.

As summarized in Table S3, a total of 93 participants were included in this analysis. Steroid dose was categorized based on pre-

viously published studies (Reddel et al., 2015). All available samples were used for each analysis.

Experimental Animals and Ethics
Animal experiments were reviewed by theWashingtonUniversity Institutional Animal Care andUseCommittee (Protocol #20180286).

Male wild-type (WT) and RAG1�/� C57BL/6J mice were obtained from Jackson Laboratory (Bar Harbor, ME); OTII Rag1+/� Ly5.1+/�

Foxp3-GFP and germ-freemice were bred in house for these experiments. Mice weremaintained under either specific pathogen free

(SPF) conditions or in a BSL-2 facility when colonized with B. pseudohinzii. Germ-free mice were maintained in a gnotobiotic facility

using flexible plastic isolators and monitored monthly to ensure sterility. All animals were housed 5 animals per cage maximum and

their welfare assessed daily after colonization. All mice were between 6 and 8 weeks old.

Bacterial Strains and Growth Conditions
Bordetella pseudohinzii strain 2-1 and 5-5 were isolated on Brain heart infusion (BHI) agar supplemented with 5% sheep’s blood from

the bronchoalveolar lavage (BAL) of two different male C57BL/6J mice. We initially established that this strain was closely related to

Bordetella hinzii by using selective PCRprimers (Hayashimoto et al., 2012) and then conclusively identified this strain asBph bywhole

genome sequencing (see below). For colonizations, Bph was grown overnight in BHI broth with shaking at 37�C. Bph strain 2-1 was

used in all experiments unless otherwise noted. E. coli strain DH5a was grown in Luria Broth at 3C overnight with shaking.

Nasal lavage culture
We used a selective culture approach to quantify the amounts of live Streptococcus, Moraxella and Haemophilus present in nasal

lavage fluid of asthmatic and non-asthmatic individuals. 100 ml of nasal lavage fluid from each participant were plated onto Strepto-

coccus selective agar (BBL), M. catarrhalis selective agar (Remel), and Haemophilus selective agar (Remel). M. catarrhalis selective

plates were incubated for 24 hours at 37�C, whileHaemophilus and Streptococcus selective plates were grown for 24 h at 37�C in the

presence of 5% CO2. We enumerated Streptococcus colonies that demonstrated alpha-hemolysis on Streptococcus selective

plates; Moraxella as colonies that showed gamma-hemolysis on selective plates; and Haemophilus as colonies that were

gamma-hemolytic on Haemophilus selective plates. The numbers of colonies were semiquantitatively assessed with the absence

of growth as ‘‘0,’’ presence of 1-50 c.f.u. as ‘‘1+,’’ presence of 51-100 c.f.u. as ‘‘2+,’’ presence of 101-300 c.f.u. as ‘‘3+’’ and >

300 c.f.u. as ‘‘4+.’’ Contamination by other organisms was detected by 16S rRNA sequencing (see below) of plate sweeps of

agar plates. If the presence of Moraxellaceae, Streptococcaceae, and Pasteurellaceae was not detected by 16S rRNA sequencing

on their respective plate sweeps, growth was noted as ‘‘0.’’

METHOD DETAILS

Colonization with Bph
Bph cultures were resuspended in PBS then diluted to approximately 10̂ 5 CFU/ml. To nasally colonize mice, we anesthetized mice

with ketamine/xylazine then pipetted a total of 50 ml of Bph into the nares of sedated animals with the goal of delivering �104 CFU to

eachmouse. For mice receiving HKBph, we autoclaved (125�C for 20minutes) an aliquot of PBSBph suspension to deliver a dose of

�104 CFU of HK Bph and confirmed the absence of viable bacteria by culture.

Bph Genome Sequencing
DNA was isolated from overnight cultures of Bph using bead-beating with phenol-chloroform extraction. The extracted and purified

DNA was then sheared to 150 bp using a Covaris E220 sonicator. Barcoded sequencing adapters were then ligated to A-tailed, end-

repaired DNA fragments (Chen et al., 2013) which were then amplified and sequenced using a MiSeq (Illumina) with paired-end

250 bp reads. Genome sequences were then assembled using SPAdes (Bankevich et al., 2012). Virulence factors in Bordetella ge-

nomes were identified by BLAST (Altschul et al., 1990) against a database of genes from the Virulence Factor Database (Chen et al.,

2016).

Enumeration of Bph
BAL (Patnode et al., 2014) and nasal lavage were obtained as described (Puchta et al., 2014). Lungs were perfused with sterile PBS

before being removed and 2 mm of tracheas were excised before homogenizing each tissue in 1 mL of PBS with 0.025% Triton X-

100. Samples were then serially diluted then spotted onto BHI Blood Agar plates and colonies counted after 18h. Antibiotic markers

were not available, so colony morphology was used to identifyBph. Additionally, we confirmed the presence ofBph in samples by V4
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16S rRNA sequencing (see below). Typically, we observed no CFU from the BALs, lungs or tracheas of non-colonized animals. Nasal

lavages from Bph colonized animals had �10̂ 3 more total CFU than non-colonized animals.

Asthma model
Allergic airway inflammation (AAI) was induced inmice using chicken egg ovalbumin (OVA), as previously described (Kuperman et al.,

2005). Mice were sensitized on days 0, 7 and 14 by i.p. injections of OVA (50 mg, Sigma grade V) complexed with aluminumpotassium

sulfate (Imject Alum, Thermo Scientific) in a total volume of 200 mL in sterile PBS 1X. Mice were then challenged intranasally with OVA

(1mg in 50 mL of sterile PBS, or 20mg/ml) on days 20-22 under anesthesia. Control mice were sensitized and challenged with PBS 1X

unless otherwise noted. On day 23, mice were sacrificed and tissues were collected for further analysis.

Processing of mouse tissue for RNA and protein
We isolated total RNA frommouse tissue as previously described (Ridaura et al., 2013). Briefly, whole lungs were removed frommice

and homogenized in 2mL of Trizol reagent. Crude RNAwas then extracted from a 0.3mL portion of the homogenized tissue and then

purified using the RNAeasy kit, according to themanufacturer’s protocol (QIAgen). If protein quantification in addition to RNAprofiling

was planned, mouse lungs were flash-frozen in liquid nitrogen at the time of sacrifice, then pulverized while still frozen then aliquoted

and stored at �80�C until used for RNA extraction (as above) or protein quantification. For protein ELISAs pulverized aliquots were

homogenized in PBS supplemented with protease inhibitor cocktail followed by centrifugation at 16,000 rcf. for 20 minutes and the

supernatant retained. Samples were normalized to total protein quantitated using Qubit protein assay kit (Fisher Q33211)

Transcriptional profiling of mouse lungs
RNA quality was then assessed using a BioAnalyzer (Agilent) to ensure that all samples had an RNA integrity number greater than 8.0.

Stranded, poly-A enriched libraries were then generated using the NEBnext Ultra II library prep kit according to the kit’s instructions

and sequenced on two lanes of a HiSeq3000 using 1x50 bp chemistry. An average of 36,338,433 reads (with a standard deviation of

13.3 million reads) were obtained per sample. After demultiplexing these data, reads were mapped to the mouse genome down-

loaded from Ensembl (GRCm38.p6, release 98; Hunt et al., 2018) using bowtie2 (Langmead and Salzberg, 2012) and reads were

quantified at the gene level using htseq (Anders et al., 2015). All technical replicates retained high similarity (Spearman rho > 0.93)

and were combined for further analysis. Differentially expressed transcripts were identified using DESeq2 (Love et al., 2014). Tran-

scripts weremapped to corresponding entrez ID using biomaRt (Durinck et al., 2009) and were used to identify genes (Figure 5B) and

pathways of interest. Functional pathways altered during colonization and/or AAI were identified by gene set enrichment analysis

using fgsea (Sergushichev, 2016) using the Kyoto Encyclopedia of Genes and Genomes database (Kanehisa and Goto, 2000) ac-

cessed through the gage R package (Luo et al., 2009).

Histopathology
Lung right lobe was collected in 4% PFA and tissue sections were prepared from paraffin block and stained with H&E. Whole lung

was collected and stored in 4% PFA for 24 hours, then rinsed with 70% ethanol. Tissue sections were prepared from paraffin blocks

and stained with PAS. Slides were analyzed on a Nanozoomer 2.0-HT at x20 and x40 objectives. The six largest airways were then

analyzed using Aperio ImageScope software (Ge et al., 2016) positive pixel count algorithm. A ratio was calculated as the number of

strong positive pixels (NSP) to the number of total pixels (Ntotal) (Ehlers et al., 2018).

16 s rRNA sequencing
DNA extracts were generated from fecal or cecal samples by phenol-chloroform extraction with bead beating as previously

described (Kau et al., 2015). 16S amplicons were generated using indexed primers (Caporaso et al., 2011) and sequenced using

a MiSeq with paired-end 250 bp reads. To process these data, we used DADA2 (version 1.10.1 in R) to generate amplicon sequence

variants (ASVs) from the demultiplexed data (Callahan et al., 2016). Forward and reverse reads were merged, chimeras were

removed, and taxonomywas assigned using the inbuilt DADA2 function for the RDPClassifier (Wang et al., 2007) with a custom data-

base described in Kau et al. (2015) and minimum bootstrap support of 80%.

Analysis of 16S data was carried out using phyloseq (version 1.28.0) in R (version 3.6.1) (McMurdie and Holmes, 2013). Random

forest was carried out using the randomForest (Liaw and Wiener, 2002) for feature selection as described in Rudnicki and Kursa

(2009). Briefly, random forest was carried out in regression mode with SLPI levels measured by ELISA in oral lavage samples as

the response and relative abundance of ASVs from 16S sequencing of oral lavage as predictors. Additionally, randomly permuted

versions of each predictor, termed shadow variables, were included. After each iteration of Random Forest, the importance scores

of the predictors were compared to the importance scores of their shadow variables. Predictors and their shadow variables were

removed if the predictors were not more important than their shadows a significant number of times. After 100 iterations of Boruta,

predictors that were selected more often than by chance alone were used in the final model.

Lymphocyte isolation from tissues
Mouse lung tissue was dissociated as previously reported (Patnode et al., 2014). Lungs were minced and incubated in digestion

buffer (0.2 U/ml Liberase DL (Roche Applied Sciences) and 0.2 mg/ml DNase (Sigma) in Hank’s Buffered Salt Solution (without
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Ca2+/Mg2+) for 25min at 37�C before being passed through a 70mmcell strainer. Spleen and lymph nodes were dissociatedmanually

and passed through a 70mm cell strainer. Red blood cells were removed from lung and spleen samples by treating with ACK lysis

buffer.

Restimulation assays
CD4+ lymphocytes from the lung, spleen and lymph nodes were purified via antibody-conjugated magnetic bead separation with the

anti-CD4 kit from STEMCELL technologies (Easysep). Antigen-presenting cells (APCs) were harvested from the spleen of mice that

had been injected 7 days previously with 1x106 B16-FLT3L expressing melanoma cells (Mach et al., 2000). APCs were isolated using

the anti-CD11c kit from STEMCELL Technologies following the manufacture protocol. Bacterial antigens were prepared by resus-

pending bacteria from an overnight culture in PBS, autoclaving for 15 minutes, then normalizing to total protein content. 5x104

CD11c+ cells were incubated with 5 or 20 mg of Bph and E. coli antigen or 500 mg of OVA for 30 min. 1x105 CD4+ cells stained

with Cell Trace FITC (InvitrogenTM) were then added to the CD11c+ cells and incubated for 72 hours at 37�C. For restimulation of

splenocytes, 7.5x105/ml cells were stained with Cell Trace FITC, then incubated with Bph proteins or OVA for 72 hours at 37�C.
For MHC class II blocking experiments, CD11c+ cells were treated with 20 mg/mL anti-MHC class II blocking antibody for 30 minutes

before adding bacterial proteins. All cells were cultured in DMEM supplemented with 10% FBS, 100 U/ml penicillin, 100mg/ml strep-

tomycin and 100mM 2-mercaptoethanol.

FACS assays
For intracellular staining of cytokines, cells were stimulated for 4 h at 37�C with PMA (10ng/mL), ionomycin (200ng/mL), monensin

(1:1000), and brefeldin A (1:1000). LIVE/DEAD Fixable Aqua Dead Cell Stain Kit was used to assess cell viability in all panels. Data

were acquired on a FACS Canto II (BD Biosciences) equipped for the detection of eight fluorescent parameters or for Figures 4H

and 4I, a five-laser Aurora (Cytek Biosciences). Data analysis was performed using FlowJo version 10 or higher software (Treestar,

Ashland, OR).

Protein quantification by ELISA
IL-17A (Biolegend) andmouse SLPI (R&DSystemsDY1735-05), and human SLPI (R&DSystemsDY1274-05) ELISAs were performed

according to the manufacturer’s protocol. Mouse serum OVA-specific IgE was quantified by sandwich ELISA (Zuberi et al., 2000).

Briefly, plates were coated with 10mg/mL of OVA overnight at 4�C and then blocked with PBS 1x + 0.1% BSA. Serum (1:25 dilution)

was placed in the wells and incubated for 2 h at room temperature. OVA-specific monoclonal IgE (Bio-Rad Cat No. MCA2259. Clone

2C6) was used as the standard curve. The bound IgE was detected by Rat anti-mouse IgE-HRP (Southern Biotech Cat No. 1130-05.

Clone 23G3).

Quantitative PCR
RNAquality was assessed by gel electrophoresis and quantitated usingQuant-it Ribogreen RNA assay kit (Invitrogen R11490). cDNA

was synthesized using High-Capacity cDNA Reverse Transcription Kit at 500 ng RNA input (Fisher 4368814). qPCR was then per-

formed using primers described in Table S4 using PowerSYBRGreen PCRMasterMix (Fisher 4367659). Results were analyzed using

the ddCT method (Livak and Schmittgen, 2001).

Measurement of Airway Hyperresponsiveness
We assessed murine airway physiology using a Flexivent with FX1 attachment. Mice were anesthetized using 10 mg/ml ketamine,

1 mg/ml xylazine cocktail and the trachea surgically cannulated (McGovern et al., 2013). After i.p. Injection of neuromuscular

blockade with pancuronium (0.8 mg/kg) (Whitehead et al., 2014), we administered escalating doses of nebulized methacholine (0,

1.56, 3.125, 6.25, 12.5, 25 mg/ml) and assessed measures of respiratory mechanics as described in the main text using area under

the curve measurements for each methacholine dose.

IL-17A neutralization
C57BL/6J mice were i.p. injected with a loading dose (500mg/mouse) of neutralizing anti-IL-17A antibody (BioXcell 17F3 BE0173) or

IgG isotype control (BioXcell MOPC21 BE0083). Subsequent does (100mg/mouse) were administered 3 times weekly as depicted in

the experimental schematics.

Adoptive transfer of naive T CD4+ cells
Lymphocytes from the spleen and lymph nodes of an OTII Rag1+/� Ly5.1+/� Foxp3-GFP mice were collected as described above.

Naive (CD4+CD44-CD62L+ FoxP3-) cells were sorted into DMEM 10% using a FACS AriaII (BD Biosciences) and 5x104 cells per

mouse were injected i.v. on day 15 of AAI model.

A549 cell culture
Human alveolar epithelial adenocarcinoma (A549) were obtained from ATCC (CCL-185) and maintained in Dulbecco’s Modified Ea-

gles Medium (DMEM; GIBCOTMCat. No. 31600-034) supplemented with 10% fetal bovine serum (FBS; GIBCOCat. No. 16000-044)
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and 0.1 mg/mL of penicillin–streptomycin antibiotic (GIBCO Cat. No.15140122). Cells were maintained at 37�C and 5% CO2 in a hu-

midified incubator with medium being replaced every 48 h.

To assess Slpi expression in response to cytokines, A549 cells (5x104) were plated on 24-well culture plates until they reached 50%

confluence. Cells were starved (0.5% FBS) for 24 h then treated with IL-1b (1 ng/ml; Biolegend 579402), TNFa (10 ng/ml; Biolegend

570102), IL-17A (100 ng/ml; Biolegend 570502), TNFa plus IL-17A (10 ng/ml; 100 ng/ml) for 14 h at 37�C and 5% CO2. The super-

natants were collected and the cells were lysed and stored in Trizol at�80�C. RNAwas isolated from A549 cells stored in Trizol using

the Macherey-Nagel Nucleospin RNA XS Kit according to the manufacturer’s protocol and qRT-PCR was performed as described

above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using Graphpad Prism 5.02 (GraphPad Software, La Jolla, CA) or R (R Development Core Team,

2011). Data are presented as the mean with error bars denoting SEM, box and whisker plots or scatterplots. Unless otherwise noted,

statistically significant differences between groups with continuous data were determined by paired or unpaired Mann-Whitney U/

Wilcoxon test, as indicated in the figures. For comparisons with multiple groups, we first performed a Kruskal-Wallace test and, if

significant, performed a post hoc Wilcoxon with adjustment of p values for multiple hypotheses using BH correction. For categorical

data, significance was determined using Fisher’s exact test. Associations were determined using Spearman’s Rank. In all figures, the

following symbols were used to designate significance: n.s. = not significant, p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p <

0.0001.
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Figure S1 Characterization of Bordetella pseudohinzii colonization. Related to Figure 1. 
(A) Weight measurements of WT mice inoculated with either HK or live Bph for 99 days after initial colonization. 
Points represent mean +/- SEM. n = 3-10 mice/time point for HK group and n = 4-29 mice/time point. 
(B) Representative Hematoxylin and Eosin staining of mice receiving live Bph taken 3, 10, 30, 60 and 184 days after 
inoculation.  
(C) Percent of mice demonstrating lymphoid aggregates over a 6-month period (n = 5 mice per time point). 
(D) Schematic of the model to investigate the host changes induced by Bph colonization. Mice were inoculated with 
either HK or live Bph 4 weeks before tissue collection for immunophenotyping.  
(E-L) Flow cytometry of immune cells recovered from lung tissue digests (E-H) or spleens (I-L) from mice 30 days 
after receiving HK (blue) or live Bph (red) inoculation. n = 9-10 mice/group, combined from two independent 
experiments. 
(E) Eosinophils as a percentage of live cells from lung tissue digests. Eosinophils were defined as Ly6G-

CD11b+SiglecF+MHC-II-CD11c-SSChi cells. Representative flow plot on left; quantification on right 
(F) Intracellular staining of FoxP3+CD4+ T cells (Tregs) from the lungs of mice receiving HK or live Bph. 
Percentage expressed as a fraction of CD4+TCRb+ (T-helper) cells. 
(G) Intracellular staining of CD4+TCRb+IFNg+ (Th1) cells from the lungs of mice receiving HK or live Bph. 
Percentage expressed as a fraction of CD4+TCRb+ (T-helper) cells. 



(H) Intracellular staining of IL-17A+CD4-TCRb- cells from the lungs of mice receiving HK or live Bph. Percentage 
expressed as a fraction of CD4-TCRb- (Non-ab TCR expressing) cells.  
(I - L) Percentage of Teff (CD4+TCRb+FoxP3-CD44hiCD62Llo) cells (I), Th17 cells (CD4+TCRb+IL-17A+IFNg-) (J), 
Treg (CD4+TCRb+FoxP3+)  (K) and Th1 (CD4+TCRb+IFNg+) (L) cells from spleen as a percentage of total T-helper 
cells. 
 
Statistical significance: Wilcox test (A) or Mann-Whitney U test (E-L). Horizontal lines indicate median values. n.s., 
p > 0. 05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
  



Figure S2 Analysis of immune genes during Bph colonization. Related to Figures 2 and 5. 
Average normalized read counts for T-helper signature genes and genes consistently upregulated during colonization 
from HK (left column) and live (middle column) groups are shown in grey. Log2 fold change of each gene is shown 
on right. Transcripts that were downregulated with colonization are shown in blue while upregulated transcripts are 
shown in red. Transcripts that are significantly enriched after FDR correction are boxed. Analysis performed in R 
using DEseq2. 
 
Statistical significance: Wald test with Benjamini-Hochberg correction as implemented in DESeq2.  
 
  



Figure S3 Characterization of antigen-specific T cell response to Bph. Related to Figures 3 and 4. 
(A) Representative Hematoxylin and Eosin staining of RAG1-/- mice receiving either HK (left panel) or live (right 
panel) Bph taken 30 days after inoculation.  
(B) Weight measurements of RAG1-/- mice inoculated with either HK or live Bph, n = 4 mice/group. Points 
represent mean +/- SEM.   
(C) Percent starting weight of mice colonized with Bph receiving either anti-IL17A monoclonal antibody or isotype 
control antibody by I.P. injection as shown in Figure 3D. Boxes indicate 25th and 75th percentiles and whiskers are 
1.5 x Interquartile range 
(D) Left panel: Flow cytometry plots of splenocytes restimulated for 72 h with either no protein (control) or Bph 
proteins from a HK culture. Cells were gated on CD4+TCRβ+ cells using CD25 as an activation marker and CFSE as 



a proliferation marker. Plots show concatenated data from splenocytes of mice (n = 5 / group) inoculated with either 
HK or live Bph and are representative of two independent experiments. Mice were colonized for 4 weeks before 
undergoing OVA sensitization and challenge. Right panel: Quantification of CD25+ CFSElo T cells from splenocyte 
cultures. n = 9-10 mice / group, combined from 2 independent experiments. 
(E) Left panel: Representative flow cytometry plots of restimulated CD4+ T cells lungs of mice after inoculation 
with either HK or live Bph and undergoing OVA sensitization and challenge. Mice were colonized for 7 to 8 weeks 
before undergoing OVA sensitization and challenge. CD11c+ dendritic cells (DC) were loaded with either no 
protein, E. coli proteins or Bph proteins from a HK culture and co-incubated with CD4+TCR�+ cells isolated from 
lung tissue for 72 hours. Cells were gated on CD4+TCRb+ cells using CD25 as an activation marker and CFSE as a 
proliferation marker. Right panel: quantification of CD25+ CFSElo lung T-cell and DC co-cultures. n = 3-9 mice / 
group, combined from 2 independent experiments. 
(F) IL-17A ELISA of culture supernatants from lung CD4+ T cells co-cultured with antigen loaded CD11c+ DCs as 
described in (E). CD4+ T cells were isolated from the lungs of five mice after inoculation with either live or HK 
Bph. n = 4-11 mice / group, combined from 2 independent experiments. 
(G) IL-17A ELISA of culture supernatants from T cells co-cultured with DCs as described in (D). CD4+ T cells were 
isolated from mediastinal lymph node (Med LN), mesenteric lymph node (MLN), spleen or lung of mice 4-8 weeks 
after inoculation with either HK (H) or live (L) Bph before undergoing OVA sensitization and challenge. CD4+ T 
cells were coincubated with and without Bph antigens. Bar plots represent means +/- SEM. n = 6-8 mice / group 
(HK), n = 11 mice/ group (Live).  
 
Statistical significance: Wilcox test in (B), (C) and (F); or Kruskal-Wallace followed by post-hoc Wilcox test with 
adjustment of multiple hypotheses using Benjamini-Hochberg correction in (D), (G) and (E). Paired Wilcox test was 
used for intrasample comparisons; unpaired testing for intersample comparisons. One-tailed testing was used for 
comparisons between restimulated samples and untreated controls. Horizontal lines indicate median values. n.s., p > 
0. 05; p > 0. 05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
  



 
Figure S4 Characterization of the allergic immune response in mice colonized with Bph. Related to Figure 3 
and 4. 
(A-C) Flow cytometry of lung tissue digests from mice 60 days after receiving HK (blue) or live Bph (red) 
inoculation and undergoing OVA sensitization and challenge. n = 9-16 mice/group. Combined from 2-3 independent 
experiments. 
(A) Percentage of Teff (CD4+TCRb+FoxP3-CD44hiCD62Llo) as a fraction of total T cells. 
(B) Intracellular staining for FoxP3 of CD4+TCRβ+ cells (T regulatory cells) as a fraction of total T-helper cells. 
(C) Neutrophils (CD11b+Ly6G+) present in tissue, defined as percentage of live cells. 
(D) Change in respiratory resistance (Rrs) respiratory elastance (Ers), tissue dampening (G), tissue elastance (H) in 
mice undergoing challenge with 25 mg/ml methacholine. Data are normalized for each mouse to airway 
measurements before undergoing methacholine challenge. Experiments were performed using a Flexivent FX1. Bars 
represent mean +/- SEM. n = 8 mice/group. 
(E - G) Assessment of OVA specific responses in mice inoculated with either live or HK Bph and undergoing AAI.  



(E) Concatenated flow cytometry plots of splenocytes from mice receiving either HK or live Bph then restimulated 
with OVA. Mice were colonized for 4 weeks before undergoing OVA sensitization and challenge. Splenocytes were 
loaded with either no protein or OVA for 72 h. Flow plots show concatenated data from 5 mice and are 
representative of two independent experiments.  
(F) Quantification of CD25+CFSElo T cells from splenocyte cultures. n = 9-10 mice / group, combined from 2 
independent experiments. 
(G) IL-17A ELISA of culture supernatants from splenocyte cultures as described in (E). n = 15-17 mice / group, 
combined from 3 independent experiments. 
(H) IL-17A ELISA of culture supernatants from lung T cells co-cultured with DCs loaded with either no protein or 
OVA for 72 h as described in (E). Mice were colonized from 4 to 8 weeks before undergoing OVA sensitization and 
challenge. n = 8-11 mice / group, combined from 3 independent experiments. 
(I) ELISA to quantify ovalbumin specific IgE from the sera of mice undergoing OVA sensitization and challenge. 
Box indicates 25th and 75th percentiles and whiskers are 1.5 x Interquartile range. n = 48 and 55 mice for HK and 
live groups, respectively, combined from 8 independent experiments. 
 
Statistical significance: Mann-Whitney U test in (A - C) and (I); Wilcox test in (D); or Kruskal-Wallace followed by 
post-hoc Wilcox test with adjustment of multiple hypotheses using Benjamini-Hochberg correction in (F), (G) and 
(H). Paired, one-way Wilcox test was used for intrasample comparisons; unpaired, two-way Wilcox test was used 
for intersample comparisons. Horizontal lines indicate median values. n.s., p > 0. 05; *, p < 0.05; **, p < 0.01; ***, 
p < 0.001. 
 
  



 
Figure S5 Characterization of T cell responses in mice colonized with Bph while experiencing allergic airway 
inflammation. Related to Figure 4. 
(A-C) Percentage and number of OVA-specific T cells (OTII) recruited to the lung and spleen of mice either 
inoculated with HK or live Bph 20 days before receiving 50,000 OTII T cells then undergoing OVA sensitization 
and challenge. n = 7-8 mice/group, combined from 2 independent experiments. 
(A) Percentage of CD4+ T cells (CD4+CD45.1+) expressing the OT-II receptor (Va2+Vb5+) recruited to the spleen. 
(B) Numbers of OT-II CD4+ T (CD4+CD45.1+Va2+Vb5+) cells recruited to the spleen. 
(C) Numbers of OT-II CD4+ T (CD4+CD45.1+Va2+Vb5+) cells recruited to the lung. 
(D) CFU of Bph recovered from BALs of mice treated with either anti-IL-17A or isotype control antibody collected 
at the time of sacrifice (35 dpi). n = 5-10 mice / group. 
(E) CFU of Bph recovered from nasal lavages of mice treated with either anti-IL-17A or isotype control antibody 
collected at the time of sacrifice (35 dpi). n = 5-10 mice / group. 
(F) Weight as a percentage of starting weight at the time of sacrifice (35 dpi) for HK (blue) of Live (red) Bph 
inoculum groups. Mice were treated with either anti-IL-17A antibody or isotype control and underwent OVA 
sensitization and challenge. n = 5-10 mice / group. 
(G) Representative flow plots of T cells (CD45+CD4+TCRb+CD25-) gated on CD44+St2+ for Th2 cells. Columns are 
HK (left) of Live (right) Bph inoculum groups. Rows are isotype (top) or anti-IL-17A treated (bottom). 
(H) Representative flow plots of T cells (CD45+CD4+TCRb+CD25-) gated on CD44+CCR6+ for Th17 cells. Columns 
are HK (left) of Live (right) Bph inoculum groups. Rows are isotype (top) or anti-IL-17A treated (bottom). 
Statistical significance: Mann-Whitney U test in (A - C); One-tailed Wilcox test in (D - E); or Kruskal-Wallace 
followed by post-hoc Wilcox test with adjustment of multiple hypotheses using Benjamini-Hochberg correction in 
(F). Horizontal lines indicate median values. Box indicates 25th and 75th percentiles and whiskers are 1.5 x 
Interquartile range. n.s., p > 0. 05; *, p < 0.05. 
  



 
Figure S6 Additional analysis of Lung Transcriptomic Data from Mice Colonized with Bph undergoing OVA 
Sensitization and Challenge. Related to Figures 2 and 5. 
(A) KEGG pathways enriched in mice receiving a live compared to HK Bph inoculum. Only pathways with an 
adjusted p value < 0.05 are shown with their normalized enrichment score. n = 5 / group 
(B) Enrichment plots and heatmaps of selected pathways. On left, enrichment plots for KEGG pathways are shown 
and on the right of each panel, a heatmap demonstrating normalized read counts and fold change of select leading-
edge genes from each KEGG pathway. Average normalized read counts for HK (left column) and Live (middle 
column) groups are shown in grey, while log2 fold change of each gene is shown in the rightmost column in blue, 
white and red. Genes that are significantly enriched after FDR correction are boxed. Analysis performed in R using 
DEseq2. 
(C) Heatmap of genes from KEGG pathways identified in Figure 2 that were no longer enriched after OVA 
sensitization and challenge. 
 
Statistical significance: GSEA statistic as implemented in fgsea (Sergushichev, 2016) (A) or the Wald test with 
Benjamini-Hochberg correction as implemented in DESeq2 in (B - C). 
 
  



 
Figure S7 SLPI abundance and Microbial Ecology Upper Airway Specimens of Healthy and Asthmatics. 
Related to Figure 6. 
(A) SLPI concentrations from nasal lavage specimens from MARS study participants divided by age and disease 
cohorts. 
(B) SLPI concentrations from oral lavage specimens from MARS study participants divided by age and disease 
cohorts. 
(C) Genus-level taxonomic overview of oral microbial communities from each study group. Taxonomy was 
determined from V4-16S rRNA as described in Methods. Each vertical bar represents a single study participant. 
(D) Observed species for each study group. 
(E) Principal Coordinates analysis of Bray-Curtis distances between oral lavage specimens. 
 



Statistical significance: Kruskal-Wallace test in (A), (B) and (D). Box indicates 25th and 75th percentiles and 
whiskers are 1.5 x Interquartile range. 
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